Аппаратные и программные компоненты сетей. Основные программные и аппаратные компоненты сети Основные программные и аппаратные компоненты сети

Назначение и краткая характеристика основных компонентов вычислительных сетей.

Вычислительной сетью называют совокупность взаимосвязанных и распределенных по некоторой территории ЭВМ.

Вычислительная сеть – вычислительный комплекс, включающий территориально распределенную систему компьютеров и их терминалов, объединенных в единую систему.

По степени географического распространения вычислительные сети подразделяются на локальные, городские, корпоративные, глобальные и др.

Вычислительная сеть состоит из трех компонент:

Сети передачи данных, включающей в себя каналы передачи данных и средства коммутации;

Компьютеров, связанных сетью передачи данных;

Сетевого программного обеспечения.

Вычислительная сеть – это сложный комплекс взаимосвязанных программных и аппаратных компонентов:

компьютеров (хост-компьютеры, сетевые компьютеры, рабочие станции, серверы), размещенных в узлах сети;

сетевой операционной системы и прикладного программного обеспечения , управляющих компьютерами;

коммуникационного оборудования – аппаратуры и каналов передачи данных с сопутствующими им периферийными устройствами; интерфейсных плат и устройств (сетевые платы, модемы); маршрутизаторов и коммутационных устройств.

Программные и аппаратные компоненты вычислительной сети

Вычислительная сеть, network - распределенная в пространстве система программных и аппаратных компонентов, связанных линиями компьютерной связи.

Среди аппаратных средств можно выделить компьютеры и коммуникационное оборудование. Программные компоненты состоят из операционных систем и сетевых приложений.

В настоящее время в сети используются компьютеры различных типов и классов с различными характеристиками. Это основа любой вычислительной сети. Компьютеры, их характеристики определяют возможности вычислительной сети. Но в последнее время и коммуникационное оборудование (кабельные системы, повторители, мосты, маршрутизаторы и др.) стало играть не менее важную роль. Некоторые из этих устройств, учитывая их сложность, стоимость и другие характеристики, можно назвать компьютерами, решающими сугубо специфические задачи по обеспечению работоспособности сетей.



Для эффективной работы сетей используются специальные сетевые операционные системы (сетевые ОС) , которые, в отличие от персональных операционных систем, предназначены для решения специальных задач по управлению работой сети компьютеров. Сетевые ОС устанавливаются на специально выделенные компьютеры.

Сетевые приложения - это прикладные программные комплексы, которые расширяют возможности сетевых ОС. Среди них можно выделить почтовые программы, системы коллективной работы, сетевые базы данных и др.

В процессе развития сетевых ОС некоторые функции сетевых приложений становятся обычными функциями ОС.

Все устройства, подключаемые к сети, можно разделить на три функциональные группы:

1) рабочие станции;

2) серверы сети;

3) коммуникационные узлы.

1) Рабочая станция , workstation - это персональный компьютер, подключенный к сети, на котором пользователь сети выполняет свою работу. Каждая рабочая станция обрабатывает свои локальные файлы и использует свою операционную систему. Но при этом пользователю доступны ресурсы сети.

Можно выделить три типа рабочих станций:

Рабочая станция с локальным диском,

Бездисковая рабочая станция,

Удаленная рабочая станция.

На рабочей станции с диском (жестким или гибким) операционная система загружается с этого локального диска. Для бездисковой станции операционная система загружается с диска файлового сервера. Такая возможность обеспечивается специальной микросхемой, устанавливаемой на сетевом адаптере бездисковой станции.

Удаленная рабочая станция - это станция, которая подключается к локальной сети через телекоммуникационные каналы связи (например, с помощью телефонной сети).

2) Сервер сети , network server - это компьютер, подключенный к сети и предоставляющий пользователям сети определенные услуги, например хранение данных общего пользования, печать заданий, обработку запроса к СУБД, удаленную обработку заданий и т. д.

По выполняемым функциям можно выделить следующие группы серверов.

Файловый сервер, file server - компьютер, хранящий данные пользователей сети и обеспечивающий доступ пользователей к этим данным. Как правило, этот компьютер имеет большой объем дискового пространства. Файловый сервер обеспечивает одновременный доступ пользователей к общим данным.

Файловый сервер выполняет следующие функций:

Хранение данных;

Архивирование данных;

Передачу данных.

Сервер баз данных, database server - компьютер, выполняющий функции хранения, обработки и управления файлами баз данных (БД).

Сервер баз данных выполняет следующие функции:

Хранение баз данных, поддержку их целостности, полноты, актуальности;

Прием и обработку запросов к базам данных, а также пересылку результатов обработки на рабочую станцию;

Согласование изменений данных, выполняемых разными пользователями;

Поддержку распределенных баз данных, взаимодействие с другими серверами баз данных, расположенными в другом месте.

Сервер прикладных программ, application server - компьютер, который используется для выполнения прикладных программ пользователей.

Коммуникационный сервер, communications server - устройство или компьютер, который предоставляет пользователям локальной сети прозрачный доступ к своим последовательным портам ввода/вывода.

С помощью коммуникационного сервера можно создать разделяемый модем, подключив его к одному из портов сервера. Пользователь, подключившись к коммуникационному серверу, может работать с таким модемом так же, как если бы модем был подключен непосредственно к рабочей станции.

Сервер доступа, access server - это выделенный компьютер, позволяющий выполнять удаленную обработку заданий. Программы, инициируемые с удаленной рабочей станции, выполняются на этом сервере.

От удаленной рабочей станции принимаются команды, введенные пользователем с клавиатуры, а возвращаются результаты выполнения задания.

Факс-сервер, fax server - устройство или компьютер, который выполняет рассылку и прием факсимильных сообщений для пользователей локальной сети.

Сервер резервного копирования данных, backup server - устройство или компьютер, который решает задачи создания, хранения и восстановления копий данных, расположенных на файловых серверах и рабочих станциях. В качестве такого сервера может использоваться один из файловых серверов сети.

Следует отметить, что все перечисленные типы серверов могут функционировать на одном выделенном для этих целей компьютере.

3) К коммуникационным узлам сети относятся следующие устройства:

Повторители;

Коммутаторы (мосты);

Маршрутизаторы;

Протяженность сети, расстояние между станциями в первую очередь определяются физическими характеристиками передающей среды (коаксиального кабеля, витой пары и т. д.). При передаче данных в любой среде происходит затухание сигнала, что и приводит к ограничению расстояния. Чтобы преодолеть это ограничение и расширить сеть, устанавливают специальные устройства - повторители, мосты и коммутаторы. Часть сети, в которую не входит устройство расширения, принято называть сегментом сети.

Повторитель , repeater - устройство, усиливающее или регенерирующее пришедший на него сигнал. Повторитель, приняв пакет из одного сегмента, передает его во все остальные. При этом повторитель не выполняет развязку присоединенных к нему сегментов. В каждый момент времени во всех связанных повторителем сегментах поддерживается обмен данными только между двумя станциями.

Коммутатор , switch, мост, bridge - это устройство, которое, как и повторитель, позволяет объединять несколько сегментов. В отличие от повторителя, мост выполняет развязку присоединенных к нему сегментов, то есть одновременно поддерживает несколько процессов обмена данными для каждой пары станций разных сегментов.

Маршрутизатор, router - устройство, соединяющее сети одного или разных типов по одному протоколу обмена данными. Маршрутизатор анализирует адрес назначения и направляет данные по оптимально выбранному маршруту.

Шлюз, gateway - это устройство, позволяющее организовать обмен данными между разными сетевыми объектами, использующими разные протоколы обмена данными.

Основными аппаратными компонентами сети являются следующие:

1. Абонентские системы: компьютеры (рабочие станции или клиенты и серверы); принтеры; сканеры и др.

2. Сетевое оборудование: сетевые адаптеры; концентраторы (хабы); мосты; маршрутизаторы и др.

3. Коммуникационные каналы: кабели; разъемы; устройства передачи и приема данных в беспроводных технологиях.

Основными программными компонентами сети являются следующие:

1. Сетевые операционные системы , где наиболее известные из них это: MS Windows; LANtastic; NetWare; Unix; Linux и т.д.

2. Сетевое программное обеспечение (Сетевые службы): клиент сети; сетевая карта; протокол; служба удаленного доступа.

ЛВС (Локальная вычислительная сеть) – это совокупность компьютеров, каналов связи, сетевых адаптеров, работающих под управлением сетевой операционной системы и сетевого программного обеспечения.

В ЛВС каждый ПК называется рабочей станцией, за исключением одного или нескольких компьютеров, которые предназначены для выполнения функций серверов. Каждая рабочая станция и сервер имеют сетевые карты (адаптеры), которые посредством физических каналов соединяются между собой. В дополнение к локальной операционной системе на каждой рабочей станции активизируется сетевое программное обеспечение, позволяющее станции взаимодействовать с файловым сервером.

Компьютеры, входящие в ЛВС клиент – серверной архитектуры, делятся на два типа: рабочие станции, или клиенты, предназначенные для пользователей, и серверы, которые, как правило, недоступны для обычных пользователей и предназначены для управления ресурсами сети.

Рабочие станции

Рабочая станция (workstation) – это абонентская система, специализированная для решения определенных задач и использующая сетевые ресурсы. К сетевому программному обеспечению рабочей станции относятся следующие службы:

Клиент для сетей;

Служба доступа к файлам и принтерам;

Сетевые протоколы для данного типа сетей;

Сетевая плата;

Контроллер удаленного доступа.

Рабочая станция отличается от обычного автономного персонального компьютера следующим:

Наличием сетевой карты (сетевого адаптера) и канала связи;

На экране во время загрузки ОС появляются дополнительные сообщения, которые информируют о том, что загружается сетевая операционная система;

Перед началом работы необходимо сообщить сетевому программному обеспечению имя пользователя и пароль. Это называется процедурой входа в сеть;

После подключения к ЛВС появляются дополнительные сетевые дисковые накопители;

появляется возможность использования сетевого оборудования, которое может находиться далеко от рабочего места.

Сетевые адаптеры

Для подключения ПК к сети требуется устройство сопряжения, которое называют сетевым адаптером, интерфейсом, модулем, или картой. Оно вставляется в гнездо материнской платы. Карты сетевых адаптеров устанавливаются на каждой рабочей станции и на файловом сервере. Рабочая станция отправляет запрос через сетевой адаптер к файловому серверу и получает ответ через сетевой адаптер, когда файловый сервер готов.

Сетевые адаптеры вместе с сетевым программным обеспечением способны распознавать и обрабатывать ошибки, которые могут возникнуть из-за электрических помех, коллизий или плохой работы оборудования.

Различные типы сетевых адаптеров отличаются не только методами доступа к каналу связи и протоколами, но еще и следующими параметрами:

Скорость передачи;

Объем буфера для пакета;

Тип шины;

Быстродействие шины;

Совместимость с различными микропроцессорами;

Использованием прямого доступа к памяти (DMA);

Адресация портов ввода/вывода и запросов прерывания;

конструкция разъема.

Основные понятия

Компьютерная сеть (вычислительная сеть, сеть передачи данных) - система связи компьютеров или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило - различные виды электрических сигналов, световых сигналов или электромагнитного излучения.
Передача данных (обмен данными, цифровая передача, цифровая связь) - физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу связи, как правило, для последующей обработки средствами вычислительной техники. Примерами подобных каналов могут служить медные провода, оптическое волокно, беспроводные каналы связи или запоминающее устройство.
Передача данных может быть аналоговой или цифровой (то есть поток двоичных сигналов), а также модулирован посредством аналоговой модуляции, либо посредством цифрового кодирования.
Сервером называется компьютер, выделенный из группы персональных компьютеров (или рабочих станций) для выполнения какой-либо сервисной задачи без непосредственного участия человека. Сервер и рабочая станция могут иметь одинаковую аппаратную конфигурацию, так как различаются лишь по участию в своей работе человека за консолью.
Некоторые сервисные задачи могут выполняться на рабочей станции параллельно с работой пользователя. Такую рабочую станцию условно называют невыделенным сервером.
Консоль (обычно - монитор/клавиатура/мышь) и участие человека необходимы серверам только на стадии первичной настройки, при аппаратно-техническом обслуживании и управлении в нештатных ситуациях (штатно, большинство серверов управляются удаленно). Для нештатных ситуаций серверы обычно обеспечиваются одним консольным комплектом на группу серверов (с коммутатором, например KVM-переключателем, или без такового).
Маршрутиза́тор - специализированный сетевой компьютер, имеющий минимум два сетевых интерфейса и пересылающий пакеты данных между различными сегментами сети, принимающий решения о пересылке на основании информации о топологии сети и определённых правил, заданных администратором.
Электромагни́тное излуче́ни е (электромагнитные волны) - распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).
Сигнал (в теории информации и связи) - материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал может генерироваться, но его приём не обязателен, в отличие от сообщения, которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.

Принципы формирования и типы сетей

Компьютер, подключенный к сети, называется рабочей станцией (Workstation); компьютер, предоставляющий СБОИ ресурсы, - сервером ; компьютер, имеющий доступ к совместно используемым ресурсам, - клиентом .
Несколько компьютеров, расположенных в одном помещении или функционально выполняющих однотипную работу (бухгалтерский или плановый учет, регистрацию поступающей продукции и т. п.), подключают друг к другу и объединяют в рабочую группу с тем, чтобы они могли совместно использовать различные ресурсы: программы, документы, принтеры, факс и т. п.
Рабочая группа организуется так, чтобы входящие в нее компьютеры содержали все ресурсы, необходимые для нормальной работы. Как правило, в рабочую группу, объединяющую более 10-15 компьютеров, включают выделенный сервер - достаточно мощный компьютер, на котором располагаются все совместно используемые каталоги и специальное программное обеспечение для управления доступом ко всей сети или ее части.
Компьютерные сети бывают двух типов – одноранговые и сети на основе сервера.
Одноранговая сеть больше подходит тем людям, которые не имеют возможности организовать крупную сеть, но желают проверить, как все-таки она работает и какую пользу приносит. Что касается сети на основе сервера, то она обычно используется для контроля всех рабочих мест.
На самом деле эти два типа компьютерных сетей практически не отличаются основами функционирования, а это дает возможность достаточно легко и быстро осуществлять переходы от одноранговой сети к сети на основе сервера.
Одноранговая сеть
Одноранговая сеть фактически представляет собой несколько компьютеров, которые соединены между собой посредством одного из распространенных типов связи. Именно по причине отсутствия сервера в данном типе сети, она считается более простой и доступной. Но также следует заметить, что в одноранговой сети компьютеры должны быть максимально мощными, так как им придется самостоятельно справляться не только с основной работой, но и с различными неполадками.
В такой сети нет компьютера, который играет роль сервера, а потому любой из рабочих компьютеров может быть таковым. За ним обычно следит сам пользователь, и в этом кроется главный недостаток одноранговой сети: пользователь должен не только осуществлять работу на компьютере, но и выполнять функции администратора. Также он должен отвечать за устранение неполадок в работе компьютера, обеспечивать максимальную защиту компьютера от вирусных атак.
Одноранговая сеть поддерживает любую операционную систему, поэтому это может быть и Windows 95, к примеру.
Обычно одноранговая сеть строится для объединения небольшого количества компьютеров (до 10) посредством кабеля и в тех случаях, когда нет необходимости в строгой защите данных. И все же один некомпетентный пользователь сети может поставить под угрозу не только ее работоспособность, но и существование!
Сеть на основе сервера
Сеть основе сервера – это самый распространенный тип сети.
В ней может использоваться один или более серверов, которые контролируют рабочие места. Сервер отличает мощность и быстродействие, он очень быстро обрабатывает запросы пользователей и за его работой следит обычно один человек, называемый системным администратором. Системный администратор следит за обновлением антивирусных баз, устраняет неполадки в сети, а также обрабатывает общие ресурсы.
Что касается количества рабочих мест в такой сети, то оно неограниченно. Лишь для сохранения нормальной работы сети по необходимости устанавливаются дополнительные серверы.
Серверы отличаются в зависимости от вида выполняемой ими работы.
Файл – сервер используется для хранения различной информации в файлах и папках. Такой сервер управляется любой ОС по типу Windows NT 4.0.
Принт-сервер занимается обслуживанием сетевых принтеров и обеспечивает доступ к ним.
Сервер базы данных обеспечивает максимальную скорость поиска и записи необходимых данных в базу данных.
Сервер приложений выполняет запросы, которые требуют высокой производительности.
Существуют также и другие серверы: почтовые, коммуникационные и т.д.
Сеть на основе сервера предоставляет намного больше возможностей и услуг, чем одноранговая, она отличается высокой производительностью и надежностью.

Назначение компьютерных сетей

Все компьютерные сети без исключения имеют одно назначение – обеспечение совместного доступа к общим ресурсам.
Слово ресурс - очень удобное. В зависимости от назначения сети в него можно вкладывать тот или иной смысл. Ресурсы бывают трех типов: аппаратные, программные и информационные. Например, устройство печати (принтер) - это аппаратный ресурс. Емкости жестких дисков - тоже аппаратный ресурс. Когда все участники небольшой компьютерной сети пользуются одним общим принтером, это значит, что они разделяют общий аппаратный ресурс. То же можно сказать и о сети, имеющей один компьютер с увеличенной емкостью жесткого диска (файловый сервер), на котором все участники сети хранят свои архивы и результаты работы.
Кроме аппаратных ресурсов компьютерные сети позволяют совместно использовать программные ресурсы. Так, например, для выполнения очень сложных и продолжительных расчетов можно подключиться к удаленной большой ЭВМ и отправить вычислительное задание на нее, а по окончании расчетов точно так же получить результат обратно. .
Данные, хранящиеся на удаленных компьютерах, образуют информационный ресурс. Роль этого ресурса сегодня видна наиболее ярко на примере Интернета, который воспринимается, прежде всего, как гигантская информационно-справочная система.
Примеры с делением ресурсов на аппаратные, программные и информационные достаточно условны. На самом деле, при работе в компьютерной сети любого типа одновременно происходит совместное использование всех типов ресурсов. Так, например, обращаясь в Интернет за справкой о содержании вечерней телевизионной программы, мы безусловно используем чьи-то аппаратные средства, на которых работают чужие программы, обеспечивающие поставку затребованных нами данных.

Основные программные и аппаратные компоненты сети

Компьютерная сеть - сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов.
Изучение сети в целом предполагает знание принципов работы ее отдельных элементов:
– компьютеров;
– коммуникационного оборудования;
– операционных систем;
– сетевых приложений.
Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью:
1. В основе любой сети лежит аппаратный слой стандартизованных компьютерных платформ , т. е. система конечного пользователя сети, в качестве которого может выступать компьютер или терминальное устройство (любое устройство ввода – вывода или отображения информации). Компьютеры в узлах сети иногда называют хост-машинами, или просто хостами.
В настоящее время в сетях широко и успешно применяются компьютеры различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Набор компьютеров в сети должен соответствовать набору разнообразных задач, решаемых сетью.
2. Второй слой - коммуникационное оборудование . Хотя компьютеры и являются центральными элементами обработки данных в сетях, в последнее время не менее важную роль стали играть коммуникационные устройства.
Кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать.
3. Третьим слоем, образующим программную платформу сети, являются операционные системы (ОС). От того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работы всей сети.
При проектировании сети важно учитывать, насколько просто данная ОС может взаимодействовать с другими ОС сети, насколько она обеспечивает безопасность и защищенность данных, до какой степени она позволяет наращивать число пользователей, можно ли перенести ее на компьютер другого типа и многие другое.
4. Самым верхним слоем сетевых средств являются различные сетевые приложения , такие как сетевые базы данных, почтовые системы, средства архивирования данных, системы автоматизации коллективной работы и др.
Очень важно представлять диапазон возможностей, предоставляемых приложениями для различных областей применения, а также знать, насколько они совместимы с другими сетевыми приложениями и операционными системами.

Классификация компьютерных сетей

По территориальной распространенности

  • PAN (Personal Area Network) - персональная сеть, предназначенная для взаимодействия различных устройств, принадлежащих одному владельцу.
  • LAN (Local Area Network) - локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин «LAN» может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку - около шести миль (10 км) в радиусе. Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.
  • CAN (Campus Area Network) - кампусная сеть - объединяет локальные сети близко расположенных зданий.
  • MAN (Metropolitan Area Network) - городские сети между учреждениями в пределах одного или нескольких городов, связывающие много локальных вычислительных сетей.
  • WAN (Wide Area Network) - , покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN - сети с коммутацией пакетов (Frame relay), через которую могут «разговаривать» между собой различные компьютерные сети. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей.
  • Термин «корпоративная сеть» также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

По типу функционального взаимодействия

  • Сеть из точки в точку - простейший вид компьютерной сети, при котором два компьютера соединяются между собой напрямую через коммуникационное оборудование. Достоинством такого вида соединения является простота и дешевизна, недостатком - соединить таким образом можно только 2 компьютера и не больше.
  • Клиент-сервер - вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемыми серверами, и заказчиками услуг, называемыми клиентами. Нередко клиенты и серверы взаимодействуют через компьютерную сеть и могут быть как различными физическими устройствами, так программным обеспечением.

Рис.1 - Схема сетевой архитектуры "клиент-сервер"

  • Одноранговая сеть (децентрализованная, пиринговая, Р2Р) - это оверлейная компьютерная сеть, основанная на равноправии участников. Часто в такой сети отсутствуют выделенные серверы, а каждый узел (peer) является как клиентом, так и выполняет функции сервера. В отличие от архитектуры клиент-сервера, такая организация позволяет сохранять работоспособность сети при любом количестве и любом сочетании доступных узлов. Участники сети называются пиры.

Рис.2 - Схема одноранговой сети

  • Многоранговая сеть - это сеть, в состав которой входят один или несколько выделенных серверов. Остальные компьютеры такой сети (рабочие станции) выступают в роли клиентов.
  • Смешанная сеть - архитектура сети, в которой имеется ряд серверов, образующих между собой одноранговую сеть. Конечные пользователи подключаются каждый к своему серверу по схеме «клиент-сервер». Поиск информации возможен в онлайновом режиме, как на своем сервере, так и (через него) на других серверах сети. Достоинством смешанных сетей является реализованная в них возможность производства одновременного поиска на большом числе компьютеров. Основной недостаток - пониженная надежность работы сети.

По типу сетевой топологии

  • Шина - Физическая среда передачи состоит из единственного кабеля, называемого общей шиной, к которой параллельно подключаются все компьютеры сети. Недостатками являются подключение небольшого числа рабочих станций (не более 20) и полное прекращение работы сети при повреждении общего кабеля. Отказы отдельных компьютеров на работу сети не влияют. Для предотвращения искажения сигнала необходимо установка терминаторов на концах кабеля.

Рис.3 - Шинная топология

  • Кольцо - это топология в которой каждый компьютер соединён линиями связи только с двумя другими: от одного он только получает информацию, а другому только передаёт. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приёмник. Это позволяет отказаться от применения внешних терминаторов. Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведёт передачу в этот момент, раньше, а другие - позже. Каждый компьютер ретранслирует (восстанавливает) приходящий к нему сигнал, то есть выступает в роли репитера, поэтому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца.

Рис.4 - Топология "кольцо"

  • Двойное кольцо - топология, построенная на двух кольцах. Первое кольцо - основной путь для передачи данных. Второе - резервный путь, дублирующий основной. При нормальном функционировании первого кольца, данные передаются только по нему. При его выходе из строя оно объединяется со вторым и сеть продолжает функционировать. Данные при этом по первому кольцу передаются в одном направлении, а по второму в обратном. Примером может послужить сеть FDDI.
  • Звезда - все компьютеры подключены к центральному узлу. Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, потому что управление полностью централизовано.

Рис.5 - Топология "звезда"

  • Ячеистая - Каждая рабочая станция сети соединяется с несколькими другими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и переизбыточным расходом кабеля, допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Обрыв кабеля не приведёт к потере соединения между двумя компьютерами.
  • Решётка - это топология, в которой узлы образуют регулярную многомерную решётку. При этом каждое ребро решётки параллельно её оси и соединяет два смежных узла вдоль этой оси. При соединении обоих внешних узлов одномерной решетки получается топология «кольцо». Двух- и трёхмерные решётки используются в архитектуре суперкомпьютеров. Характеризуется высокой надежностью и сложностью реализации.

Рис.6 - Решеточная топология

  • Дерево - характеризуется тем, что между любой парой узлов сети с такой топологией существует лишь один путь. Число каналов связи в n-узловой древовидной сети минимально и равно (n - 1). Надежность сети низкая, поскольку отказ даже одного из каналов может привести к расчленению сети на две изолированные подсети.

Рис.7 - Топология "дерево"

  • Fat Tree - В отличие от классической топологии дерево, в которой все связи между узлами одинаковы, связи в Fat Tree становятся более широкими (толстыми, производительными по пропускной способности) с каждым уровнем по мере приближения к корню дерева. Часто используют удвоение пропускной способности на каждом уровне.

Рис.8 - Топология "Fat tree"

По типу среды передачи

  • Проводные (телефонный провод, коаксиальный кабель, витая пара, волоконно-оптический кабель)
  • Беспроводные (передачей информации по радиоволнам в определенном частотном диапазоне, WI-FI)

Основными типами передающих сред, используемых в компьютерных сетях, являются:
– аналоговые телефонные каналы общего пользования;
– цифровые каналы;
– узкополосные и широкополосные кабельные каналы;
– радиоканалы и спутниковые каналы связи;
– оптоволоконные каналы связи.

По функциональному назначению

  • Сети хранения данных
  • Серверные фермы
  • Сети управления процессом
  • Сети SOHO, домовые сети

По скорости передач

  • низкоскоростные (до 10 Мбит/с),
  • среднескоростные (до 100 Мбит/с),
  • высокоскоростные (свыше 100 Мбит/с);

По сетевым операционным системам

  • На основе Windows
  • На основе UNIX
  • На основе NetWare
  • На основе Cisco

По необходимости поддержания постоянного соединения

  • Пакетная сеть, например Фидонет и UUCP
  • Онлайновая сеть, например Интернет и GSM

Локальные компьютерные сети

Локальная сеть объединяет компьютеры, установленные в одном помещении (например, школьный компьютерный класс, состоящий из 8-12 компьютеров) или в одном здании (например, в здании школы могут быть объединены в локальную сеть несколько десятков компьютеров, установленных в различных предметных кабинетах).

Рис.9 - Схема локальной сети (LAN)

В небольших локальных сетях все компьютеры обычно равноправны, т. е. пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, каталоги, файлы) сделать общедоступными по сети. Такие сети называются одноранговыми.
Если к локальной сети подключено более десяти компьютеров, то одноранговая сеть может оказаться недостаточно производительной. Для увеличения производительности, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов или программ-приложений. Такие компьютеры называются серверами, а локальная сеть - сетью на основе серверов.
Каждый компьютер, подключенный к локальной сети, должен иметь специальную плату (сетевой адаптер). Между собой компьютеры (сетевые адаптеры) соединяются с помощью кабелей.

Глобальная компьютерная сеть Интернет.

В настоящее время на десятках миллионов компьютеров, подключенных к , хранится громадный объем информации (сотни миллионов файлов, документов и т. д.) и сотни миллионов людей пользуются информационными услугами глобальной сети.
- это глобальная компьютерная сеть, объединяющая многие локальные, региональные и корпоративные сети и включающая в себя десятки миллионов компьютеров.
В каждой локальной или корпоративной сети обычно имеется, по крайней мере, один компьютер, который имеет постоянное подключение к Интернету с помощью линии связи с высокой пропускной способностью (сервер Интернета).

Рис.10 - Глобальная сеть - Интернет
Надежность функционирования глобальной сети обеспечивается избыточностью линий связи: как правило, серверы имеют более двух линий связи, соединяющих их с Интернетом.
Основу, «каркас» Интернета составляют более ста миллионов серверов, постоянно подключенных к сети.
К серверам Интернета могут подключаться с помощью локальных сетей или коммутируемых телефонных линий сотни миллионов пользователей сети.

Основные сетевые протоколы

Простое подключение одного компьютера к другому - шаг, необходимый для создания сети, но не достаточный. Чтобы начать передавать информацию, нужно убедиться, что компьютеры "понимают" друг друга. Как же компьютеры "общаются" по сети? Чтобы обеспечить эту возможность, были разработаны специальные средства, получившие название "протоколы". Протокол - это совокупность правил, в соответствии с которыми происходит передача информации через сеть. Понятие протокола применимо не только к компьютерной индустрии. Даже те, кто никогда не имел дела с Интернетом, скорее всего работали в повседневной жизни с какими-либо устройствами, функционирование которых основано на использовании протоколов. Так, обычная телефонная сеть общего пользования тоже имеет свой протокол, который позволяет аппаратам, например, устанавливать факт снятия трубки на другом конце линии или распознавать сигнал о разъединении и даже номер звонящего.

Исходя из этой естественной необходимости, миру компьютеров потребовался единый язык (то есть протокол), который был бы понятен каждому из них.

Сетевой протокол - это набор правил и стандартов, по которым происходит обмен данными в компьютерной сети.

Наиболее распространённой системой классификации сетевых протоколов является так называемая модель OSI, в соответствии с которой протоколы делятся на 7 уровней по своему назначению - от физического (формирование и распознавание электрических или других сигналов) до прикладного (интерфейс программирования приложений для передачи информации приложениями).
Сетевые протоколы предписывают правила работы компьютерам, которые подключены к сети. Они строятся по многоуровневому принципу. Протокол некоторого уровня определяет одно из технических правил связи. В настоящее время для сетевых протоколов используется модель OSI (Open System Interconnection - взаимодействие открытых систем, ВОС).
Модель OSI - это 7-уровневая логическая модель работы сети. Модель OSI реализуется группой протоколов и правил связи, организованных в несколько уровней:
В компьютерной сети существует 7 уровней взаимодействия между компьютерами:
1) физический;
2) логический (или канальный);
3) сетевой;
4) транспортный;
5) уровень сеансов связи;
6) представительский;
7) прикладной уровень.
1. Физический уровень (Physical Layer) определяет электрические, механические, процедурные и функциональные спецификации и обеспечивает для канального уровня установление, поддержание и разрыв физического соединения между двумя компьютерными системами, непосредственно связанными между собой с помощью передающей среды, например, аналогового телефонного канала, радиоканала или оптоволоконного канала.
2. Канальный уровень (Data Link Layer) управляет передачей данных по каналу связи. Основными функциями этого уровня являются разбиение передаваемых данных на порции, называемые кадрами, выделение данных из потока бит, передаваемых на физическом уровне, для обработки на сетевом уровне, обнаружение ошибок передачи и восстановление неправильно переданных данных.
3. Сетевой уровень (Network Layer) обеспечивает связь между двумя компьютерными системами сети, обменивающихся между собой информацией. Другой функцией сетевого уровня является маршрутизация данных (называемых на этом уровне пакетами) в сети и между сетями (межсетевой протокол).
4. Транспортный уровень (Transport Layer) обеспечивает надежную передачу (транспортировку) данных между компьютерными системами сети для вышележащих уровней. Для этого используются механизмы для установки, поддержки и разрыва виртуальных каналов (аналога выделенных телефонных каналов), определения и исправления ошибок при передаче, управления потоком данных (с целью предотвращения переполнения или потерь данных).
5. Сеансовый уровень (Session Layer) обеспечивает установление, поддержание и окончание сеанса связи для уровня представлений, а также возобновление аварийно прерванного сеанса.
6. Уровень представления данных (Presentation Layer) обеспечивает преобразование данных из представления, используемого в прикладной программе одной компьютерной системы в представление, используемое в другой компьютерной системе. В функции уровня представлений входит также преобразование кодов данных, их шифровка/расшифровка, а также сжатие передаваемых данных.
7. Прикладной уровень (Application Level) отличается от других уровней модели тем, что он обеспечивает услуги для прикладных задач. Этот уровень определяет доступность прикладных задач и ресурсов для связи, синхронизирует взаимодействующие прикладные задачи, устанавливает соглашения по процедурам восстановления при ошибках и управления целостностью данных. Важными функциями прикладного уровня является управление сетью, а также выполнение наиболее распространенных системных прикладных задач: электронной почты, обмена файлами и других.
Поскольку каждый из уровней модели ISO/OSI обладает своими особенностями, реализация всех этих особенностей невозможна в рамках одного протокола.

Основные протоколы используемые в работе Интернет:

  • IMAP4
  • Gorpher

Краткое описание протоколов

Самый распространенный протокол транспортного уровня и в локальных, и в глобальных сетях, разработанный Министерством обороны США более 20 лет назад.
является не одним протоколом, а целым набором протоколов, работающих совместно. Он состоит из двух уровней. Протокол верхнего уровня, TCP, отвечает за правильность преобразования сообщений в пакеты информации, из которых на приемной стороне собирается исходное послание. Протокол нижнего уровня, IP, отвечает за правильность доставки сообщений по указанному адресу. Иногда пакеты одного сообщения могут доставляться разными путями.
Стандарты являются открытыми и непрерывно совершенствуются.

Рис.11 - Принцип работы протокола TCP/IP

POP (Post Office Protocol)

Стандартный протокол почтового соединения. Серверы POP обрабатывают входящую почту, а протокол POP предназначен для обработки запросов на получение почты от клиентских почтовых программ.

SMTP (Simple Mail Transfer Protocol)

Протокол, который задает набор правил для передачи почты. Сервер SMTP возвращает либо подтверждение о приеме, либо сообщение об ошибке, либо запрашивает дополнительную информацию.

Протокол HTTP (Hypertext Transfer Protocol - Протокол передачи гипертекста) является протоколом более высокого уровня по отношению к протоколу TCP/IP - протоколом уровня приложения. HTTP был разработан для эффективной передачи по Интернету Web-страниц. Именно благодаря HTTP мы имеем возможность созерцать страницы Сети во всем великолепии. Протокол HTTP является основой системы World Wide Web.

Вы отдаете команды HTTP, используя интерфейс броузера, который является HTTP-клиентом. При щелчке мышью на ссылке броузер запрашивает у Web-сервера данные того ресурса, на который указывает ссылка - например, очередной Web-страницы.

Чтобы текст, составляющий содержимое Web-страниц, отображался на них определенным образом - в соответствии с замыслом создателя страницы - он размечается с помощью особых текстовых меток - тегов языка разметки гипертекста (HyperText Markup Language, HTML).

Адреса ресурсов Интернета, к которым вы обращаетесь по протоколу HTTP, выглядит примерно следующим образом: http://www.tut.by

С помощью этого протокола вы можете подключиться к удаленному компьютеру как пользователь (если наделены соответствующими правами, то есть знаете имя пользователя и пароль) и производить действия над его файлами и приложениями точно так же, как если бы работали на своем компьютере.

Telnet является протоколом эмуляции терминала. Работа с ним ведется из командной строки. Если вам нужно воспользоваться услугами этого протокола, не стоит рыскать по дебрям Интернета в поисках подходящей программы. Telnet-клиент поставляется, например, в комплекте Windows 98.

Чтобы дать команду клиенту Telnet соединиться с удаленным компьютером, подключитесь к Интернету, выберите в меню Пуск (Start) команду Выполнить (Run) и наберите в строке ввода, например, следующее: telnet lib.ru

(Вместо lib.ru вы, разумеется, можете ввести другой адрес.) После этого запустится программа Telnet, и начнется сеанс связи.

WAIS расшифровывается как Wide-Area Information Servers. Этот протокол был разработан для поиска информации в базах данных. Информационная система WAIS представляет собой систему распределенных баз данных, где отдельные базы данных хранятся на разных серверах. Сведения об их содержании и расположении хранятся в специальной базе данных - каталоге серверов. Просмотр информационных ресурсов осуществляется с помощью программы - клиента WAIS.

Поиск информации ведется по ключевым словам, которые задает пользователь. Эти слова вводятся для определенной базы данных, и система находит все соответствующие им фрагменты текста на всех серверах, где располагаются данные этой базы. Результат представляется в виде списка ссылок на документы с указанием того, насколько часто встречается в данном документе искомое слово и все искомые слова в совокупности.

Даже в наши дни, когда систему WAIS можно считать морально устаревшей, специалисты во многих областях при проведении научных исследований тем не менее обращаются к ней в поисках специфической информации, которую не могут найти традиционными средствами.

Адрес ресурса WAIS в Интернете выглядит примерно так: wais://site.edu

Протокол Gopher - протокол уровня приложения, разработанный в 1991 году. До повсеместного распространения гипертекстовой системы World Wide Web Gopher использовался для извлечения информации (в основном текстовой) из иерархической файловой структуры. Gopher был провозвестником WWW, позволявшим с помощью меню передвигаться от одной страницы к другой, постепенно сужая круг отображаемой информации. Программы-клиенты Gopher имели текстовый интерфейс. Однако пункты меню Gopher могли указывать и не только на текстовые файлы, но также, например, на telnet-соединения или базы данных WAIS.

Gopher переводится как "суслик", что отражает славное университетское прошлое разработчиков этой системы. Студенческие спортивные команды Университета Миннесоты носили название Golden Gophers ("Золотые суслики").

Сейчас ресурсы Gopher можно просматривать с помощью обычного Web-броузера, так как современные броузеры поддерживают этот протокол.

Адреса информационных ресурсов Gopher имеют примерно следующий вид: gopher://gopher.tc.umn.edu

WAP (Wireless Application Protocol) был разработан в 1997 году группой компаний Ericsson, Motorola, Nokia и Phone.com (бывшей Unwired Planet) для того, чтобы предоставить доступ к службам Интернета пользователям беспроводных устройств - таких, как мобильные телефоны, пейджеры, электронные органайзеры и др., использующих различные стандарты связи.

К примеру, если ваш мобильный телефон поддерживает протокол WAP, то, набрав на его клавиатуре адрес нужной Web-страницы, вы можете увидеть ее (в упрощенном виде) прямо на дисплее телефона. В настоящее время подавляющее большинство производителей устройств уже перешли к выпуску моделей с поддержкой WAP, который также продолжает совершенствоваться.

Сетевые устройства и оборудование

Технические средства коммуникаций составляют кабели (экранированная и неэкранированная витая пара, коаксиальный, оптоволоконный), коннекторы и терминаторы, сетевые адаптеры, повторители, разветвители, мосты, маршрутизаторы, шлюзы, а также модемы, позволяющие использовать различные протоколы и топологии в единой неоднородной системе.
Сетевая карта (адаптер) - устройство для подключения компьютера к сетевому кабелю.
В качестве физической среды для обмена информацией обычно используются: толстый (thick) коаксиальный кабель, тонкий (thin) коаксиальный кабель, оптоволоконный кабель и неэкранированная витая пара (Unshielded Twisted-Pair, UTP).
Для решения проблемы межсетевого взаимодействия изготовителями оборудования предлагаются различные интерфейсные устройства - повторители (repeater), мосты (bridge), маршрутизаторы (router), мосты/маршрутизаторы (bridge/router) и шлюзы (gateway).
Основное различие между этими устройствами состоит в том, что повторители действуют на 1-м (физическом) уровне, мосты - на 2-м уровне, маршрутизаторы - это устройства, которые действуют на 3-м (сетевом) уровне, а шлюзы - на 4–7 уровнях.
Маршрутизаторы - устройства для соединения сегментов сети, действующие на сетевом уровне и использующие маршрутную информацию сетевого уровня. Маршрутизаторы обмениваются между собой информацией о свойствах, состоянии сети, работоспособности каналов и доступности узлов в целях выбора оптимального пути для передачи пакета. Такой процесс выбора маршрута по адресу абонентской системы, которая принимает пакет, называют маршрутизацией.
Различают однопротокольные и многопротокольные маршрутизаторы, которые могут поддерживать одновременно несколько протоколов, например IPX/SPX, TCP/IP и другие. Так как встречаются протоколы, которые не содержат информации сетевого уровня, то маршрутизаторам приходится выполнять и функции моста. Поэтому современные многопротокольные маршрутизаторы называют «мостами-маршрутизаторами». Среди достоинств маршрутизаторов следует отметить возможность выбора маршрута, разбиение длинных сообщений на несколько коротких и использование альтернативных путей для их передач, приводящее к выравниванию трафиков по параллельным путям, тем самым позволяющее соединять сети с пакетами разной длины и облегчающее объединение сетей.
Мосты - устройства для соединения сегментов сети, функционирующие на подуровне контроля доступа к среде (Media Access Control) канального уровня модели OSI/ISO. Мосты обладают свойством прозрачности для протоколов более высоких уровней, то есть осуществляют передачу кадра из одного сегмента в другой по физическому адресу станции получателя, который выделяется из заголовка канального уровня, анализируют целостность кадров и отфильтровывают испорченные. Эти устройства могут обладать свойством самообучения, то есть по мере прохождения через мост кадров он заполняет две таблицы адресами станций, отправляющих сообщения, физически располагая их по разные стороны от моста и записывая в разные таблицы.
Сегменты сети, которые соединяются мостом, могут использовать как одинаковые, так и разные канальные протоколы. В последнем случае мост переводит кадр одного формата в кадр другого формата.
Мосты автоматически адаптируются к изменению конфигурации сети и могут соединять сети с различными протоколами сетевого уровня. К сожалению, эти устройства не могут распределять нагрузку, используя альтернативные пути в сети, что приводит иногда к перегрузке трафика (потока информационного обмена в линии связи).
Повторитель - устройство, действующее на физическом уровне, предназначенное для компенсации затухания в среде передачи данных путем усиления сигналов в целях увеличения расстояния их распространения. Одной из разновидностей повторителей являются конверторы среды. Они позволяют преобразовывать сигналы, например, при соединении коаксиального и оптоволоконного кабелей, при переходе из одной среды передачи в другую.
Разветвитель - пассивное устройство для соединения более двух кабельных сегментов.
Шлюзы - устройства, оперирующие на верхних уровнях модели OSI (сеансовом, представления и приложений). Они представляют метод подсоединения сетевых сегментов и компьютерных сетей к центральным ЭВМ. Необходимость в применении шлюзов появляется, когда объединяют две системы с совершенно различной архитектурой для перевода потока данных, проходящих между этими системами.
Для подключения к другим линиям связи используются модемы. Наибольшее распространение получили модемы, ориентированные на подключение к коммутируемой телефонной линии.
Модем - устройство, предназначенное для обмена информацией между удаленными компьютерами по каналам связи. Модем для подключения к коммутируемой телефонной линии выполняет преобразование компьютерных данных в звуковой аналоговый сигнал для передачи по телефонной линии (модуляция), а также обратное преобразование (демодуляция).
Модемы бывают внутренние и внешние. Внутренние модемы вставляются внутрь системного блока компьютера. Внешние модемы представлены в виде отдельного устройства, которое соединяется кабелем с последовательным портом компьютера, таким же, к какому часто подключают мышь. Внутренние модемы содержат встроенный последовательный порт и получают питание от компьютера, внешние имеют отдельный блок питания. Внутренние модемы дешевле внешних при прочих равных характеристиках, основной из которых является скорость.
Факс-модем - устройство, обеспечивающее электронную передачу обычного текста, чертежей, фотографий, схем, документов, преобразование информации в форму, пригодную для передачи по имеющемуся каналу связи, и формирование на бумажном носителе на приемной стороне дубликата - факсимиле - исходного документа. Вообще говоря, в состав любого телефакса входят сканер для считывания документа, модем, передающий и принимающий информацию по телефонной линии, а также принтер, печатающий принимаемое сообщение на термо- или обычной бумаге. Разумеется, в платах факс-модемов такие узлы, как сканер и принтер, отсутствуют. Информация представлена только в «электронном» виде.

Часто задаваемые вопросы

Что такое IP адрес (айпи адрес)?

Каждый компьютер в сети имеет свой уникальный адрес (номер) - так называемый IP-адрес - он представляет собой число вида aaa.bbb.ccc.ddd, (например 10.240.51.23), где первая и вторая цифра (10.240.) - едины для всех сетей ДОМ, третья цифра – указывает на сегмент сети, к которой подключен компьютер, четвёртая цифра - непосредственно номер компьютера.
Каждый компьютер имеет два IP-адреса: внутренний (локальный) и внешний (при подключении к Интернету).

Как узнать IP адрес?
Что такое шлюз (сервер)?

Это компьютер в нашей сети, через который Вы попадаете в сеть Интернет. Запрос от Вашего компьютера передается через сеть к серверу, он проверяет ваши данные (ip-адрес, MAC-адрес, логин и пароль) и после этого вы получаете доступ в сеть Интернет.

Что такое DNS сервер?

DNS-сервер (произносится "дэ-эн-эс") - специальный сервер, содержащий информацию об IP-адресах. Система имен доменов (DNS), которая используется в сети Интернет, устанавливает соответствие между именами узлов и доменов с одной стороны и IP-адресами с другой стороны. DNS использует иерархическую базу данных имен, распределенную по нескольким компьютерам.

Что такое трафик?

Трафик -это объем информации, поступающей на Ваш компьютер из сети и отправленой с него в сеть. Каждый раз, когда Вы просмтариваете страницы Интернет к Вам на компьютер поступает некий объем информации, измеряемый в байтах.
Дело в том, что любой ресурс Интернет, будь то странички www, музыка видео, www-чаты, IRC, сервера новостей и т. д. это трафик. Вы просматриваете www страничку - значит на ваш компьютер поступила из сети какая -то информация, Вы слушаете музыку из Интернет -значит, на компьютер из сети передается информация.
Что такое "входящий" и "исходящий" трафик?
Входящий трафик - это объем информации, приходящей на Ваш компьютер из сети, а исходящий, соответственно, объем, уходящий с Вашего компьютера в сеть.

Как соединить два компьютера в сеть (сетевой мост)?

Ответ: Один из компьютеров подключается к сети Интернет, второй компьютер подключается к первому. Главным недостатком в этом случае является то, что для выхода в сеть второго компьютера необходимо, чтобы в сети был так же и первый компьютер. А также, если у вас подключение к Интернет идет по сетевой карте, то необходима дополнительная сетевая карта для подключения второго компьютера к первому, т.к. встроенная сетевая карта уже занята (она принимает Интернет).

Помогите, пожалуйста, наиболее грамотно выбрать топологию сети.

Ответ: В первую очередь определитесь с типом несущей. Дело в том, что использование коаксиального кабеля или витой пары подразумевает принципиально различные архитектуры локальной сети. В первом случае сеть будет строиться по принципу "общей шины" – все входящие в нее компьютеры последовательно соединяются друг с другом в цепочку при помощи отрезков кабеля, образуя единую магистраль. Это довольно удобно, если все пользователи вашей сети живут на одной лестничной площадке или в квартирах, расположенных одна под другой. Однако, если компьютеры разбросаны по всему подъезду (или дому), коаксиальный кабель будет петлять, что неудобно уже на этапе первичной прокладки сети. Если же потребуется подключить к ней еще несколько новых пользователей, проблемы возрастут в геометрической прогрессии. К тому же "общая шина" опасна: если будет испорчен отрезок сети между двумя компьютерами, то отключается вся сеть. Витая пара позволяет создать совершенно иную сетевую архитектуру. Кабель витой пары аналогичен обычному телефонному, только вместо 2 (или 4) проводов в нем используется 8, разделенных на 4 пары. Витая пара – более гибкий и практичный кабель, удобный в укладке и хорошо защищенный от внешнего воздействия. Однако главный плюс этого варианта в другом: на витой паре основывается локальная сеть типа "звезда" или "дерево" – в центре ее находится коммуникационное устройство (в простейшем случае, концентратор) с несколькими портами, к каждому из которых посредством кабеля присоединяется конечный компьютер. при использовании такой архитектуры отказ одного или нескольких участков сети не приведет к ее остановке, и остальные пользователи смогут продолжать работать. Единственная опасность заключается только в выходе из строя коммуникационного оборудования.

Протянули сетевой кабель между домами и боимся выхода из строя сети во время грозы. Как борются с грозами?

Ответ: Грозы – вообще бич сетей. В большой сети ни одна гроза не проходит без потерь. Существует множество устройств по защите сетевого оборудования от этой напасти. В основном это переходники между устройствами и сетевым кабелем. Переходник заземляется, и при попадании молнии в кабель выгорает только переходник. По рекламе эффективность их работы доходит до 90%. Какое устройство выбрать – дело ваше. Более надежным средством при грозе является применение оптоволоконной сетевой техники хотя бы на от-крытых участках сети.

Даже в результате достаточно поверхностного рассмотрения работы в сети становится ясно, что вычислительная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов. Изучение сети в целом предполагает знание принципов работы ее отдельных элементов:

    компьютеров;

    коммуникационного оборудования;

    операционных систем;

    сетевых приложений.

Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью. В основе любой сети лежит аппаратный слой стандартизованных компьютерных платформ. В настоящее время в сетях широко и успешно применяются компьютеры различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Набор компьютеров в сети должен соответствовать набору разнообразных задач, решаемых сетью.

Второй слой - это коммуникационное оборудование. Хотя компьютеры и являются центральными элементами обработки данных в сетях, в последнее время не менее важную роль стали играть коммуникационные устройства. Кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным обеспечением как по влиянию на характеристики сети, так и по стоимости. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать. Изучение принципов работы коммуникационного оборудования требует знакомства с большим количеством протоколов, используемых как в локальных, так и глобальных сетях.

Третьим слоем, образующим программную платформу сети, являются операционные системы (ОС). От того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работы всей сети. При проектировании сети важно учитывать, насколько просто данная операционная система может взаимодействовать с другими ОС сети, насколько она обеспечивает безопасность и защищенность данных, до какой степени она позволяет наращивать число пользователей, можно ли перенести ее на компьютер другого типа и многие другие соображения.

Самым верхним слоем сетевых средств являются различные сетевые приложения, такие как сетевые базы данных, почтовые системы, средства архивирования данных, системы автоматизации коллективной работы и др. Очень важно представлять диапазон возможностей, предоставляемых приложениями для различных областей применения, а также знать, насколько они совместимы с другими сетевыми приложениями и операционными системами.

Простейший случай взаимодействия двух компьютеров

В самом простом случае взаимодействие компьютеров может быть реализовано с помощью тех же самых средств, которые используются для взаимодействия компьютера с периферией, например, через последовательный интерфейс RS-232C. В отличие от взаимодействия компьютера с периферийным устройством, когда программа работает, как правило, только с одной стороны - со стороны компьютера, в этом случае происходит взаимодействие двух программ, работающих на каждом из компьютеров.

Программа, работающая на одном компьютере, не может получить непосредственный доступ к ресурсам другого компьютера - его дискам, файлам, принтеру. Она может только «попросить» об этом программу, работающую на том компьютере, которому принадлежат эти ресурсы. Эти «просьбы» выражаются в виде сообщений , передаваемых по каналам связи между компьютерами. Сообщения могут содержать не только команды на выполнение некоторых действий, но и собственно информационные данные (например, содержимое некоторого файла).

Рассмотрим случай, когда пользователю, работающему с текстовым редактором на персональном компьютере А, нужно прочитать часть некоторого файла, расположенного на диске персонального компьютера В (рис. 4). Предположим, что мы связали эти компьютеры по кабелю связи через СОМ-порты, которые, как известно, реализуют интерфейс RS-232C (такое соединение часто называют нуль-модемным). Пусть для определенности компьютеры работают под управлением MS-DOS, хотя принципиального значения в данном случае это не имеет.

Рис. 4. Взаимодействие двух компьютеров

Драйвер СОМ-порта вместе с контроллером СОМ-порта работают примерно так же, как и в описанном выше случае взаимодействия ПУ с компьютером. Однако при этом роль устройства управления ПУ выполняет контроллер и драйвер СОМ-порта другого компьютера. Вместе они обеспечивают передачу по кабелю между компьютерами одного байта информации. (В «настоящих» локальных сетях подобные функции передачи данных в линию связи выполняются сетевыми адаптерами и их драйверами.)

Драйвер компьютера В периодически опрашивает признак завершения приема, устанавливаемый контроллером при правильно выполненной передаче данных, и при его появлении считывает принятый байт из буфера контроллера в оперативную память, делая его тем самым доступным для программ компьютера В. В некоторых случаях драйвер вызывается асинхронно, по прерываниям от контроллера.

Таким образом, в распоряжении программ компьютеров А и В имеется средство для передачи одного байта информации. Но рассматриваемая в нашем примере задача значительно сложнее, так как нужно передать не один байт, а определенную часть заданного файла. Все связанные с этим дополнительные проблемы должны решить программы более высокого уровня, чем драйверы СОМ-портов. Для определенности назовем такие программы компьютеров А и В приложением А и приложением В соответственно. Итак, приложение А должно сформировать сообщение-запрос для приложения В. В запросе необходимо указать имя файла, тип операции (в данном случае - чтение), смещение и размер области файла, содержащей нужные данные.

Чтобы передать это сообщение компьютеру В, приложение А обращается к драйверу СОМ-порта, сообщая ему адрес в оперативной памяти, по которому драйвер находит сообщение и затем передает его байт за байтом приложению В. Приложение В, приняв запрос, выполняет его, то есть считывает требуемую область файла с диска с помощью средств локальной ОС в буферную область своей оперативной памяти, а далее с помощью драйвера СОМ-порта передает считанные данные по каналу связи в компьютер А, где они и попадают к приложению А.

Описанные функции приложения А могла бы выполнить сама программа текстового редактора, но включать эти функции в состав каждого приложения - текстовых редакторов, графических редакторов, систем управления базами данных и других приложений, которым нужен доступ к файлам, - не очень рационально. Гораздо выгоднее создать специальный программный модуль, который будет выполнять функции формирования сообщений-запросов и приема результатов для всех приложений компьютера. Как уже было ранее сказано, такой служебный модуль называется клиентом. На стороне же компьютера В должен работать другой модуль - сервер, постоянно ожидающий прихода запросов на удаленный доступ к файлам, расположенным на диске этого компьютера. Сервер, приняв запрос из сети, обращается к локальному файлу и выполняет с ним заданные действия, возможно, с участием локальной ОС.

Программные клиент и сервер выполняют системные функции по обслуживанию запросов приложений компьютера А на удаленный доступ к файлам компьютера В. Чтобы приложения компьютера В могли пользоваться файлами компьютера А, описанную схему нужно симметрично дополнить клиентом для компьютера В и сервером для компьютера А.

Схема взаимодействия клиента и сервера с приложениями и операционной системой приведена на рис. 5. Несмотря на то, что мы рассмотрели очень простую схему аппаратной связи компьютеров, функции программ, обеспечивающих доступ к удаленным файлам, очень похожи на функции модулей сетевой операционной системы, работающей в сети с более сложными аппаратными связями компьютеров.

Рис. 5. Взаимодействие программных компонентов при связи двух компьютеров

Очень удобной и полезной функцией клиентской программы является способность отличить запрос к удаленному файлу от запроса к локальному файлу. Если клиентская программа умеет это делать, то приложения не должны заботиться о том, с каким файлом они работают (локальным или удаленным), клиентская программа сама распознает и перенаправляет (redirect) запрос к удаленной машине. Отсюда и название, часто используемое для клиентской части сетевой ОС, -редиректор . Иногда функции распознавания выделяются в отдельный программный модуль, в этом случае редиректором называют не всю клиентскую часть, а только этот модуль.

Вычислительная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов. Изучение сети предполагает знание принципов работы ее отдельных элементов:

компьютеров;

коммуникационного оборудования;

операционных систем;

сетевых приложений.

Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью. В основе любой сети лежит аппаратный слой. В настоящее время в сетях широко и успешно применяются компьютеры различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ.

Второй слой - это коммуникационное оборудование. Хотя компьютеры и являются центральными элементами обработки данных в сетях, в последнее время не менее важную роль стали играть коммуникационные устройства. Кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов сети превратились в основные. Изучение принципов работы коммуникационного оборудования требует знакомства с большим количеством протоколов, используемых как в локальных, так и глобальных сетях.

Третьим слоем являются операционные системы (ОС). От ОС зависит эффективность работы всей сети. При проектировании сети важно учитывать, насколько просто данная ОС может взаимодействовать с другими ОС сети, насколько она обеспечивает безопасность и защищенность данных, до какой степени она позволяет наращивать число пользователей, можно ли перенести ее на компьютер другого типа. Драйвер сетевого адаптера – спец. программа обеспеч. взаимод. ОС с новыми устройствами.

Самым верхним слоем сетевых средств являются различные сетевые приложения, такие как сетевые базы данных, почтовые системы, средства архивирования данных, системы автоматизации коллективной работы и др.

5 Ethernet .Сетевая технология - это согласованный набор стандартных протоколов и реа­лизующих их программно-аппаратных средств, достаточных для построения вычислительной сети.

Иногда сетевые технологии называют базовыми технологиями, на их основе строится базис любой сети. Примерами базовых сетевых тех­нологий могут служить Ethernet, Token Ring и FDDI, Х.25 и frame relay. Стандарт Ethernet был принят в 1980 году. Число сетей - 5 миллионов, а количество компьютеров- 50 миллионов.Основной принцип, положенный в основу Ethernet, - случайный метод досту­па к разделяемой среде передачи данных. В качестве такой среды может использо­ваться толстый или тонкий коаксиальный кабель, витая дара, оптоволокно или радиоволны. В стандарте Ethernet строго зафиксирована топология электрических связей. Компьютеры подключаются к разделяемой среде в соответствии с типовой структурой «общая шина». Передача данных происходит со скоростью 10 Мбит/с(эта величина явля­ется пропускной способностью сети Ethernet).Суть случайного метода доступа состоит в следующем. Компьютер в сети Ethernet может передавать данные по сети, только если сеть свободна. Поэтому важной час­тью технологии Ethernet является процедура определения доступности среды.После того как компьютер убедился, что сеть свободна, он начинает передачу, при этом «захватывает» среду.Время монопольного использования разделяемой среды одним узлом ограничивается временем передачи одного кадра. Кадр - это единица данных, которыми обмениваются компьютеры в сети Ethernet. Сеть Ethernet устроена так, что при попадании кадра в разделяемую среду пе­редачи данных все сетевые адаптеры одновременно начинают принимать этот кадр. Все они анализируют адрес назначения, располагающийся в одном из начальных полей кадра, и, если этот адрес совпадает с их собственным адресом, кадр помеща­ется во внутренний буфер сетевого адаптера. Таким образом, компьютер-адресат получает предназначенные ему данные.Иногда может возникать ситуация, когда одновременно два или более компью­тера решают, что сеть свободна, и начинают передавать информацию. Такая ситу­ация, называемая коллизией . В стандарте Ethernet предусмотрен алгоритм обнаружения и корректной обработ­ки коллизий. После обнаружения коллизии сетевые адаптеры, которые пытались передать свои кадры, прекращают передачу и после паузы пытают­ся снова получить доступ к среде и передать тот кадр, который вызвал коллизию. Достоинства 1)экономичность и простота(кабель, адаптер);2) исп-ся топология шина ведет к упрощению сетевого адаптера;3) сетевые адаптеры просты; 4)легкая расширяемость сети

6 Модель OSI

В начале 80-х годов ряд международных организаций по стандартизации разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем или моделью OSI. Модель OSI определя­ет различные уровни взаимодействия систем, дает им стандартные имена и указы­вает, к/ие ф-ции должен выполнять каждый уровень. В модели OSI выделяют семь уровней:Прикладной Представительный Сеансовы Транспортный Сетевой Канальный Физический. В модели OSI различаются два основных типа протоколов.В протоколах с установлением соеденения и протоколы без предварительного установления со­единения. Такие протоколы называются также дейтаграммными про­токолами.

Физический уровень имеет дело с передачей битов по физическим каналам связи. К этому уровню имеют отношение характеристики физических сред(передача данных, полоса пропускания, помехозащищенность, волновое сопротивление). Функции физического уровня реализуются во всех устройствах, подключен­ных к сети. Со стороны компьютера функции физического уровнявыполняютсясетевым адаптером или последовательным портом.

Канальный уровень.Одна из задач канального уровня является проверка доступности среды передачи. Другой задачей канальногоуровня является реализация механизмов обнаружения и коррекции ошибок.Дляэтого на канальном уровне биты группируются в наборы, называемые кадрами. Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму. Когда кадр приходит по сети, получатель вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпада­ют, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровеньможет не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети.

Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей. Протоколы канального уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией. Образуется составная сеть. Сети соединяются между собой спец. устройствами, называемыми маршрутизаторами(это устройство, к/ое собирает инфор­мацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения). Транспортный уровень обеспечвает передачу данных с требуемой степенью надежности. В модели OSI опред.5 классов транспортного сервиса (0-4).Каждый класс соотв. параметрам определяющим срочность, возможность восстановления прерванной связи, наличие ср-в мультипликсирования, возможность к обнаружению и восстановлению ошибок. Все параметры опред. надежность передачи.

Сеансовый уровень обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации.

Представительный уровень обеспечивает представление инф-ии по сети не меняя ее содержания. Вып-ся шифрование или дешифрация.

Прикладной уровень это набор разнообразных протоколов, с помощью которых пользователи сети получают до­ступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, организуют свою совместную работу.

Модель OSI представляет хотя и очень важную, но только одну из многих мо­делей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, службами, поддерживаемыми на верхних уровнях, и прочими параметрами.

Стек протоколов OSI

Стек протоколов OSI полностью соответствует модели OSI .Протоколы стека OSI неоднозначны, т.к. стек разрабатывался тогда когда многие стеки протоколов уже существовали. С другой стороны стек OSI поддерживается наиболее популярными протоколами.

Уровни стека

Сетевой ур-нь : в него включены редкие протоколы (connection ONP, CLNP). Названия говорят о том что первый ориентирован на соединение, 2-ой –нет. Есть и др. протоколы этого ур-ня пользующиеся большой популярностью

Транспортный ур-нь : в соответствии с функциями урня модели OSI пользователь задает нужное обслуживаний

Прикладной ур-нь: обеспечивает передачу файлов, почту, службу каталогов.Наиболее популярные протоколы стандарта Х.500-служба каталогов,Х-400-эл-ая почта, VTP-стандарт удаленного терминала,FTAM-протокол передачи доступа управления файлами, JTM – протокол пересылки

8 Стек IPX/SPX

Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы сетевого и сеансового уровней Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали название стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньшей степени, чем стек IPX/SPX. Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare, которая еще сохраняет мировое лидерство по числу установленных систем, хотя в последнее время ее популярность несколько снизилась и по темпам роста она отстает от Microsoft Windows NT.Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare (до версии 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Понятно, что для таких компьютеров компании Novell нужны были протоколы, на реализацию которых требовалось бы минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS объемом 640 Кбайт) и которые бы быстро работали на процессорах небольшой вычислительной мощности. В результате протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами). Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell и на его реализацию нужно получать лицензию (то есть открытые спецификации не поддерживались), долгое время ограничивали распространенность его только сетями NetWare. Однако с момента выпуска версии NetWare 4.0 Novell внесла и продолжает вносить в свои протоколы серьезные изменения, направленные на их адаптацию для работы в корпоративных сетях. Сейчас стек IPX/ SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС, например SCO UNIX, Sun Solaris, Microsoft Windows NT.

9 Стек NetBIOS/SMB

Этот стек широко используется в продуктах компаний IBM и Microsoft. На физическом и канальном уровнях этого стека используются все наиболее распространенные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBEUI и SMB.

Протокол NetBIOS (Network Basic Input/Output System) появился в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM. В дальнейшем этот протокол был заменен так называемым протоколом расширенного пользовательского интерфейса NetBEUI - NetBIOS Extended User Interface. Для обеспечения совместимости приложений в качестве интерфейса к протоколу NetBEUI был сохранен интерфейс NetBIOS. Протокол NetBEUI разрабатывался как эффективный протокол, потребляющий немного ресурсов и предназначенный для сетей, насчитывающих не более 200 рабочих станций. Этот протокол содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако с его помощью невозможна маршрутизация пакетов. Это ограничивает применение протокола NetBEUI локальными сетями, не разделенными на подсети, и делает невозможным его использование в составных сетях. Некоторые ограничения NetBEUI снимаются реализацией этого протокола NBF (NetBEUI Frame), которая включена в операционную систему Microsoft Windows NT.

Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.

Стеки протоколов SNA фирмы IBM, DECnet корпорации Digital Equipment и AppleTalk/AFP фирмы Apple применяются в основном в операционных системах и сетевом оборудовании этих фирм.

На показано соответствие некоторых, наиболее популярных протоколов уровням модели OSI. Часто это соответствие весьма условно, так как модель OSI - это только руководство к действию, причем достаточно общее, а конкретные протоколы разрабатывались для решения специфических задач, причем многие из них появились до разработки модели OSI. В большинстве случаев разработчики стеков отдавали предпочтение скорости работы сети в ущерб модульности - ни один стек, кроме стека OSI, не разбит на семь уровней. Чаще всего в стеке явно выделяются 3-4 уровня: уровень сетевых адаптеров, в котором реализуются протоколы физического и канального уровней, сетевой уровень, транспортный уровень и уровень служб, вбирающий в себя функции сеансового, представительного и прикладного уровней.

10 В настоящее время стек TCP/IP является самым популярным средством организа­ции составных сетей. В стеке TCP/IP определены 4 уровня(прикладной, основной, ур-нь межсетевого взаимодействия, ур-нь сетевых интерфейсов). Каждый из этих уровней несет на себе некоторую нагрузку по решению основной задачи - организации надежной и производительной работы составной сети, части которой построены на основе раз­ных сетевых технологий.

Уровень межсетевого взаимодействияСтержнем всей архитектуры является уровень межсетевого взаимодействия, который реализует концепцию передачи пакетов в режиме без установления соединений. Этот уровень обеспечивает возможность пере­мещения пакетов по сети, используя тот маршрут, который в данный момент являет­ся наиболее рациональным. Основным протоколом сетевого уровня в стеке является протокол IP (Internet Protocol). Этот протокол изначально проектировался как про­токол передачи пакетов в составных сетях. Протокол IP хорошо работает в сетях со сложной топологией. К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации.

Основной уровеньТ.к. на сетевом уровне не устанавливаются соединения, то нет никаких га­рантий, что все пакеты будут доставлены в место назначения целыми или придут в том же порядке, в котором они были отправлены. Эту задачу решает основной уровень стека TCP/IP, называемый также транспортным. На этом уровне функционируют протокол управления передачей TCP и протокол дейтаграмм пользователя(UDP). Протокол TCP обеспечивает надежную передачу сообщений между уда­ленными прикладными процессами за счет образования логических соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом и вы­полняет только функции связующего звена между сетевым про­токолом и многочисленными службами прикладного уровня или пользовательскими процессами.

Прикладной уровень объединяет все службы, предоставляемые системой пользова­тельским приложениям. Он реализуется программными системами, базирующимися на протоколах нижних уровней. Этот уровень постоянно расширяется за счет присоединения к старым

Уровень сетевых интерфейсовПротоколы этого уровня должны обеспечивать ин­теграцию в составную сеть других сетей: сеть TCP/IP должна иметь средства включения в себя любой другой сети. Этот уровень нельзя определить раз и навсегда. Для каждой технологии, включае­мой в составную сеть подсети, должны быть разработаны собственные интерфейс­ные средства. Уровень сетевых интерфейсов в протоколах TCP/IP поддерживает все популярные стандарты физического и канального уровней: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, для глобальных сетей - протоколы соединений «точка-точка» SLIP и РРР, протоколы территориальных сетей с коммутацией пакетов Х.25, frame relay.

Соответствие уровней стека TCP/IP семиуровневой модели ISO/OSI)

Рассматривая многоуровневую архитектуру TCP/IP, можно выделить в ней, подобно архитектуре OSI, уровни, функции которых зависят от конкретной технической реализации сети, и уровни, функции которых ориентированы на работу с приложениями

11 В соответствии со стандартами IEEE 802 канальный уровень в локальных сетях состоит из двух подуровней - LLC и МАС.

LLC- уровень управления логическим каналом

Протокол LLC обеспечивает для технологий локальных сетей нужное качество услуг транспортной службы, передавая свои кадры. Он занимает уровень между сетевыми протоколами и протоколами уровня MAC. В основу протокола LLC положен протокол HDLC, являющийся стандартом ISO.

Три типа процедур уровня LLC: процедура без установления соединения и без подтверждения;

процедура с установлением соединения и подтверждением; процедура без установления соединения, но с подтверждением.

Протокол LLC обеспечивает для технологий локальных сетей нужное качество транспортной службы, передавая свои кадры либо дейтаграммным способом, либо с помощью процедур с установлением соединения и восстановлением кадров. Логический канал протокола LLC2 является дуплексным, так что данные могут передаваться в обоих направлениях.

Подуровень МАС выполняет следующие функции:

Поддерживает сервисы для подуровня LLC; Формирует кадр определенного формата; Управляет процедурой передачи токена; Адресует станции в сети; Копирует кадры, предназначенные для данной станции; Генерирует контрольную последовательность кадра и проверяет ее у всех кадров, циркулирующих по кольцу; Удаляет из кольца все кадры, которые сгенерировала данная станция; Управляет таймерами; ведет ряд счетчиков событий, что помогает обнаружить и локализовать неисправности и т.д.;

В каждом блоке МАС параллельно работают два процесса: процесс передачи символов и процесс приема символов. За счет этого МАС может одновременно передавать символы одного кадра и принимать символы другого кадра.

Операции МАС-уровня. С помощью операций МАС-уровня станции получают доступ к кольцу и передают свои кадры данных. Цикл передачи кадра от одной станции к другой состоит из нескольких этапов: захвата токена станцией, которой необходимо передать кадр, передачей одного или нескольких кадров данных, освобождением токена передающей станцией, ретрансляцией кадра промежуточными станциями, распознаванием и копированием кадра станцией-получателем и удалением кадра из сети станцией-отправителем.

12 Классический Ethernet устраивал большинство пользователей на протяжении около 15 лет. Однако в начале 90-х г. начала ощущаться его недо­статочная пропускная способность. Многие сегменты Ethernet стали перегруженными, частота возникновения коллизий воз­росла.

Назрела необходимость в разработке «нового» Ethernet, т. е. технологии, к/ая была бы эффективной по соотношению цена/качество при про­изводительности 100 Мбит/с, В 1992 году группа производителей сетевого оборудования, образовали неком­мерческое объединение Fast Ethernet Alliance для разработки стандарта новой технологии, которая должна была в максимально возможной степени сохранить особенности технологии Ethernet. Особенно если учесть высокие затраты на поиск и устранение неисправностей в круп­ной кабельной коаксиальной системе. Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используются три варианта кабельных систем: волоконно-оптический многомодовый кабель;

Коаксиальный кабель в число разрешенных сред передачи данных новой технологии Fast Ethernet не попал. Т.к. на небольших расстояниях витая пара позволяет передавать данные с той же скоростью, что и коаксиальный кабель, но сеть получается более дешевой и удобной в эксплуатации. Отказ от коаксиального кабеля привел к тому, что сети Fast Ethernet всегда имеют иерархическую древовидную структуру, построенную на концентраторах.

Официальный стандарт 802.3и установил три различных спецификации для физического уровня Fast Ethernet и дал им следующие названия:

100Base-TX ;100Base-T4 ;100Base-FX

Правила построения сегментов Fast Ethernet при использовании повторителей

Технология Fast Ethernet, как и все некоаксиальные варианты Ethernet, рассчитана на использование концентраторов-повторителей для образования связей в сети. Правила корректного построения сегментов сетей Fast Ethernet включают:

ограничения на максимальные длины сегментов;

ограничения на максимальный диаметр сети;

ограничения на максимальное число повторителей и максимальную длину сегмента, соединяющего повторители.

13 Технология 1OOVG-AnyLAN отличается от классического Ethernet в значительно большей степени, чем Fast Ethernet. Отличия

1 Используется другой метод доступа. Кроме того, этот метод поддерживает приоритетный доступ для синхронных приложений.

2 Кадры передаются не всем станциям сети, а только станции назначения.

3 В сети есть выделенный арбитр доступа - концентратор.

4 Поддерживаются кадры двух технологий - Ethernet и Token Ring (именно это обстоятельство дало добавку AnyLAN в названии технологии).

5 Данные передаются одновременно по 4 парам кабеля UTP категории 3. По каж­дой паре данные передаются со скоростью 25 Мбит/с, что в сумме дает 100 Мбит/с. В отличие от Fast Ethernet в сетях 100VG-AnyLAN нет коллизий, поэтому удалось использовать для передачи все четыре пары стандартного ка­беля категории 3. Для кодирования данных применяется код 5В/6В.

Сеть состоит из центрального концентратора, называемого также корневым, и соединен­ных с ним конечных узлов и других концентраторов. Каждый концентратор и сетевой адап­тер lOOVG-AnyLAN должен быть настроен либо на работу с кадрами Ethernet, либо с кадрами Token Ring, причем одновременно циркуляция обоих типов кадров не допускается. Концентратор циклически выполняет опрос портов. Станция, желающая передать пакет, посылает специальный низкочастотный сигнал концентратору. В сети lOOVG-AnyLAN используются два уровня приоритетов - низкий и высокий. Низкий уровень приоритета соответ­ствует обычным данным (файловая служба, служба печати и т. п.), а высокий при­оритет соответствует данным, чувствительным к временным задержкам (например, мультимедиа). Если сеть свободна, то концентратор разрешает передачу пакета. Если сеть занята, концентратор ставит полученный запрос в очередь, которая обрабатывается в соответствии с порядком поступления запросов и с учетом приоритетов. Если к порту подключен другой концентратор, то опрос при­останавливается до завершения опроса концентратором нижнего уровня.

Важная особенность технологии lOOVG-AnyLAN - сохранение форматов кад­ров Ethernet и Token Ring. Для поддержки очень требовательных к скорости передачи данных прило­жений имеется технология Gigabit Ethernet, которая, сохраняя преемственность с Ethernet и Fast Ethernet, обеспечивает скорость передачи данных 1000 Мбит/с.

Основная идея разработчиков Стандарта Gigabit Ethernet состояла в максимальном сохранении идей классической технологии Ethernet при достижении битовой скорости в 1000 Мбит/с.

Стандарт Gigabit Ethernet на уровне протокола не поддерживает:

Качество обслуживания;

Избыточные связи;

Тестирование работоспособности узлов и оборудования.

Всеми этими св-ми в локальных сетях сегодня обладают коммутаторы. Поэтому разработчики технологии решили, что базовый протокол просто должен быстро передавать данные, а более сложные должны быть переданы протоколам верхних уровней, которые работают в коммутаторах.

14Технология Token Ring (802.5)

Разделенная среда состоит из отрезков кабеля, к/ым соеденяются все станции в кольцо. Отличие от Ethernet: разделение среды происходит в опр. порядке. По сети передается спец. электрический сигнал (кадр). Технология Token Ring была разработана компанией IBM в 1984 году. Компания IBM использует технологию Token Ring в качестве своей основной сетевой технологии для построения локальных сетей на основе компьютеров различных классов - мэйнфреймов, мини-компьюте­ров и персональных компьютеров. Сме­шение станций, работающих на различных скоростях, в одном кольце не допускается. В технологии T.R. посланный кадр возвращается отправителю =>имеется шанс проверить качество передачи. Процесс передачи маркера нач. с включ. одной машины,к/ая наз. активным манитором. Если в сети несколько машин, то активный манитор- станция с максимальным МАС-@. Активный монитор каждые 3 сек. генерирует кадр спец. назначения.Если кадр не генерируется более 7 сек., то в сети происходит повторный выбор активного монитора. Получив маркер, станция анализирует его и обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что дает ей право доступа к физической среде и передачи своих данных. Переданные данные проходят по кольцу всегда в одном направлении от одной станции к другой. Кадр снабжен

@ назначения и @ источника. Если кадр проходит через станцию назначения, то, распознав свой адрес, эта станция копиру­ет кадр в свой внутренний буфер и вставляет в кадр признак подтверждения при­ема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и передает в сеть новый маркер. Такой алгоритм доступа применяется в сетях Token Ring со скоростью работы 4 Мбит/с, Время владения разделяемой средой в сети Token Ring ограничивается време­нем удержания маркера, Обычно время удержания марке­ра по умолчанию равно 10 мс. Для сетей 4 Мбит/с размер кадра обычно равен 4 Кбайт, а для сетей 16 Мбит/с - 16 Кбайт. В сетях T. R. 16 Мбит/с используется алгоритм раннего освобождения маркера. В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно, так как по коль­цу одновременно продвигаются кадры нескольких станций.

Физический уровень технологии Token Ring

IBM строила сети T.R. на основе концентраторов MAU или MSAU.Концентратор T. R может быть активным(имеет автономное питание) или пассивным(просто соединяет порты внутренними связями так, чтобы станции, образовали кольцо). Основное отлич. концентратора состоит в том что концентратор типа MSAU обеспеч. обход тех портов к к/ым подключ. неактивные комп. Т.к. активный концентратор восстанавливает сигнал.В случае наличия пассивного концентратора роль усилителя играет сетевой адаптер до к/го дошел сигнал. При большом кол-ве передающих станций присутствует ф-ция ресинхронизации. T.R. строится на основе топологии звезда- кольцо,т.е. узлы подключ. к концентратору звездой, а сами концентр. др. к др. через спец. порты. Назначение портов образование магистрального физич. кольца. Все станции в кольце должны работать на одной скорости - либо 4 Мбит/с, либо 16 Мбит/с. Максимальная длина кольца Token Ring составляет 4000 м. Существует большое количество аппаратуры для сетей Token Ring, которая улуч­шает некоторые стандартные характеристики этих сетей: максимальную длину сети, расстояние между концентраторами, надежность (путем использования двойных колец). Недавно компания IBM предложила новый вариант технологии Token Ring, названный High-Speed Token Ring, HSTR. Эта технология поддерживает битовые скорости в 100 и 155 Мбит/с, сохраняя основные особенности технологии Token Ring 16 Мбит/с.

15 Технология FDDI -это первая технология лок. сетей, в к/ой сре­дой передачи данных является волоконно-оптический кабель. Работы начались в 80-е годы Основные характеристики технологии

Технология FD0DI во многом основывается на технологии TokenRing, развивая и совершенствуя ее основные идеи.

Цели FDDI:1 повысить скорость передачи данных до 100 Мбит/с;2 повысить отказоустойчивость сети за счет стандартных процедур восстановле­ния ее после отказов различного рода - поврежде-ния кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;3 максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участ­ки кабеля только первичного кольца, этот режим назван режимом «сквозным» или «транзитным». Вторичное кольцо в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные первичное кольцо объединяется со вторичным, вновь образуя единое кольцо. Этот режим работы сети называется «свертывание» или «сворачивание» колец. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении, а по вторичному - в обратном. Поэтому при образовании общего кольца из двух колец передат­чики станций остаются подключенными к приемникам соседних стан­ций, что позволяет правильно передавать и принимать информацию соседними станциями. Отказоустойчивость технологии FDDI

Для обеспечения отказоустойчивости в стандарте FDDI предусмотрено создание двух оптоволоконных колец - первичного и вторичного и два вида подсоединения станций к сети. Одновременное подключение к первичному и вторичному кольцам называется двойным подключением. Подключение только к первичному кольцу называется одиноч­ным подключением В стандарте FDDI предусмотрено наличие в сети конечных узлов - станций, а также концентраторов. Для станций и концентраторов допустим любой вид подключения к сети - как одиночный, так и двойной. Обычно концентраторы имеют двойное подключение, а станции - одинарное. В случае однократного обрыва кабеля между устройствами с двойным подклю­чением сеть FDDI сможет продолжить нормальную работу за счет автоматической реконфигурации внутренних путей передачи кадров между портами концентрато­ра.Двукратный обрыв кабеля приведет к образованию двух изолиро­ванных сетей FDDI. При обрыве кабеля, идущего к станции с одиночным подключением, она становится отрезанной от сети, а кольцо продолжает работать Физический уровень разделен на два подуровня: независимый от среды и зависящий от среды

16В стеке TCP/IP используются три типа адресов: локальные (аппаратные), IP-адреса и символьные доменные имена.

В терминологии TCP/IP под локальным адресом понимается тип адреса, который используется средствами базовой технологии для доставки данных в пределах подсети. В разных подсе­тях допустимы разные сетевые технологии, разные стеки протоколов.Технологии(Ethernet,FDDI,T.R.)идентифиц. интерфейсы по МАС-адр. В др.технологиях исп. св. схемы адресации узлов.Сложность возникает при объденении сетей разных технологий. Такой @ становиться составным компанентам соотв. Технологии. Компьютер в локальной сети может иметь несколько локальных адресов даже при одном сетевом адаптере. Некоторые сетевые устрой­ства не имеют локальных адресов. Напр, к таким устройствам относятся глобальные порты маршрутизаторов, предназначенные для соединений типа «точ­ка-точка».

IP-адреса представляют собой основной тип адресов, на основании которых сетевой уровень передает пакеты между сетями. Эти адреса состоят из 4 байт 109.26.17.100. IP-адрес назначается администратором. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произволь­но, либо назначен по рекомендации специального подразделения Internet. Но­мер узла в протоколе IP назначается независимо от локального адреса узла. IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Символьные доменные имена. Символьные имена в IP-сетях называются доменны­ми и строятся по иерархическому признаку. Составляющие полного символьного имени в IP-сетях разделяются точкой и перечисляются в следующем порядке: снача­ла простое имя конечного узла, затем имя группы узлов, затем имя более крупной группы и так до имени домена самого высокого уровня RU - Россия,. Примеров домен­ного имени может служить имя base2.sales.zil.ru. Между доменным именем и IP-адресом узла нет никакого алгоритмического соответствия, поэтому необходимо использовать какие-то дополнительные таблицы или службы, чтобы узел сети одно­значно определялся как по доменному имени, так и по IP-адресу. В сетях TCP/IP используется специальная распределенная служба DNS, ко­торая устанавливает это соответствие на основании таблиц соответствия. Поэтому доменные имена называют также DNS-именами.

IP-адреса.

ФОРМАТ.

IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, пред­ставляющих значения каждого байта в десятичной форме и разделенных точками, например, 128.10.2.30 - традиционная десятичная форма представления адреса.Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая - к номеру узла, определяется значениями первых бит адреса. Значения этих бит являются также признаками того, к какому классу относится тот или иной IP-адрес.

Классы IP-адресов

Если адрес начинается с 0, то сеть относят к классу А и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) Сетей класса А немного, зато количество узлов в них может достигать 2 24 .- Если первые два бита адреса равны 10, то сеть относится к классу В. В сетях класса В под номер сети и под номер узла отводится по 16 бит, то есть по 2 байта. Таким образом, сеть класса В является сетью средних размеров с максимальным числом узлов 2 16.- Если адрес начинается с последовательности 110, то это сеть класса С. В этом случае под номер сети отводится 24 бита, а под номер узла - 8 бит. Сети этого класса наиболее распространены, число узлов в них ограничено 2 8 .

Если адрес начинается с последовательности 1110, то он является адресом клас­са D обозначает особый, групповой адрес - multicast.

Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е.

Особые IP-адреса

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов. Если весь IP-адрес состоит только из двоичных нулей, то он обозначает адрес того узла, который сгенерировал этот пакет; этот режим используется только в некоторых сообщениях ICMP. Если в поле номера сети стоят только нули, то по умолчанию считается, что узел назначения принадлежит той же самой сети, что и узел, который отправил пакет. Если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назна­чения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети.-Особый смысл имеет IP-адрес, первый октет которого равен 127. Он использу­ется для тестирования программ и взаимодействия процессов в пределах одной машины.--Групповые адреса.

Использование масок в IP-адресации

Традиционная схема деления IP-адреса на номер сети и номер узла основана на понятии класса, который определяется значениями нескольких первых бит адреса. Именно потому, что первый байт адреса 185.23.44.206 попадает в диапазон 128-191, мы можем сказать, что этот адрес относится к классу В, а значит, номером сети являются первые два байта, дополненные двумя нулевыми байтами - 185.23.0.0, а номером узла - 0.0.44.206.Маска - это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые должны в IP-адресе интерпрети­роваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность. Для стандартных классов сетей маски имеют следующие значения: класс А - (255.0.0.0); класс В- (255.255.0.0); класс С- (255.255.255.0).

Похожая информация.


Объединение рассмотренных выше компонент в сеть может производится различными способами и средствами. По составу своих компонент, способам их соединения, сфере использования и другим признакам сети можно разбить на классы таким образом, чтобы принадлежность описываемой сети к тому или иному классу достаточно полно могла характеризовать свойства и качественные параметры сети.

Однако такого рода классификация сетей является довольно условной. Наибольшее распространение на сегодня получило, разделение компьютерных сетей по признаку территориального размещения. По этому признаку сети делятся на три основных класса: ·

LAN - локальные сети (Local Area Networks); ·
MAN - городские сети (Metropolitan Area Networks). ·
WAN - глобальные сети (Wide Area Networks);

Локальная сеть (ЛС) - это коммуникационная система, поддерживающая в пределах здания или некоторой другой ограниченной территории один или несколько высокоскоростных каналов передачи цифровой информации, предоставляемых подключенным устройствам для кратковременного монопольного использования. Территории, охватываемые ЛС, могут существенно различаться.
Длина линий связи для некоторых сетей может быть не более 1000 м, другие же ЛС в состоянии обслужить целый город. Обслуживаемыми территориями могут быть как заводы, суда, самолеты, так и учреждения, университеты, колледжи. В качестве передающей среды, как правило, используются коаксиальные кабели, хотя все большее распространение получают сети на витой паре и оптоволокне, а в последнее время также стремительно развивается технология беспроводных локальных сетей, в которых используется один из трех видов излучений: широкополосные радиосигналы, маломощное излучение сверхвысоких частот (СВЧ излучение) и инфракрасные лучи.
Небольшие расстояния между узлами сети, используемая передающая среда и связанная с этим малая вероятность появления ошибок в передаваемых данных позволяют поддерживать высокие скорости обмена - от 1 Мбит/с до 100 Мбит/с (в настоящее время уже есть промышленные образцы ЛС со скоростями порядка 1 Гбит/с).

Городские сети, как правило, охватывают группу зданий и реализуются на оптоволоконных или широкополосных кабелях. По своим характеристикам они являются промежуточными между локальными и глобальными сетями. В последнее время в связи с прокладкой высокоскоростных и надежных оптоволоконных кабелей на городских и междугородних участках, а новые перспективные сетевые протоколы, например, ATM (Asynchronous Transfer Mode - режим асинхронной передачи), которые в перспективе могут использоваться как в локальных, так и в глобальных сетях.

Глобальные сети, в отличие от локальных, как правило, охватывают значительно большие территории и даже большинство регионов земного шара (примером может служить сеть Internet). В настоящее время в качестве передающей среды в глобальных сетях используются аналоговые или цифровые проводные каналы, а также спутниковые каналы связи (обычно для связи между континентами). Ограничения по скорости передачи (до 28,8 Кбит/с на аналоговых каналах и до 64 Кбит/с - на пользовательских участках цифровых каналов) и относительно низкая надежность аналоговых каналов, требующая использования на нижних уровнях протоколов средств обнаружения и исправления ошибок существенно снижают скорость обмена данными в глобальных сетях по сравнению с локальными.
Существуют и другие классификационные признаки компьютерных сетей. Так, например:

По сфере функционирования сети могут быть разделены на банковские сети, сети научных учреждений, университетские сети;

По форме функционирования можно выделить коммерческие сети и бесплатные сети, корпоративные и сети общего пользования;

По характеру реализуемых функций сети подразделяются на вычислительные, предназначенные для решения задач управления на основе вычислительной обработки исходной информации; информационные, предназначенные для получения справочных данных по запросу пользователей; смешанные, в которых реализуются вычислительные и информационные функции;

По способу управления вычислительные сети делятся на сети с децентрализованным, централизованным и смешанным управлением. В первом случае каждая ЭВМ, входящая в состав сети, включает полный набор программных средств для координации выполняемых сетевых операций. Сети такого типа сложны и достаточно дороги, так как операционные системы отдельных ЭВМ разрабатываются с ориентацией на коллективный доступ к общему полю памяти сети. В условиях смешанных сетей под централизованным управлением ведется решение задач, обладающих высшим приоритетом и, как правило, связанных с обработкой больших объемов информации;

По совместимости программного обеспечения бывают сети однородными или гомогенными (состоящие из программно-совместимых компьютеров) и неоднородной или гетерогенной (если компьютеры, входящие в сеть, программно несовместимы).