C стандартные функции для работы со строками. Функции обработки строк в Cи. Основные функции стандартной библиотеки string.h

Пожалуйста, приостановите работу AdBlock на этом сайте.

Итак, строки в языке Си. Для них не предусмотрено отдельного типа данных, как это сделано во многих других языках программирования. В языке Си строка – это массив символов. Чтобы обозначить конец строки, используется символ "\0" , о котором мы говорили в прошлой части этого урока. На экране он никак не отображается, поэтому посмотреть на него не получится.

Создание и инициализация строки

Так как строка – это массив символов, то объявление и инициализация строки аналогичны подобным операциям с одномерными массивами.

Следующий код иллюстрирует различные способы инициализации строк.

Листинг 1.

Char str; char str1 = {"Y","o","n","g","C","o","d","e","r","\0"}; char str2 = "Hello!"; char str3 = "Hello!";

Рис.1 Объявление и инициализация строк

В первой строке мы просто объявляем массив из десяти символов. Это даже не совсем строка, т.к. в ней отсутствует нуль-символ \0 , пока это просто набор символов.

Вторая строка. Простейший способ инициализации в лоб. Объявляем каждый символ по отдельности. Тут главное не забыть добавить нуль-символ \0 .

Третья строка – аналог второй строки. Обратите внимание на картинку. Т.к. символов в строке справа меньше, чем элементов в массиве, остальные элементы заполнятся \0 .

Четвёртая строка. Как видите, тут не задан размер. Программа его вычислит автоматически и создаст массив символов нужный длины. При этом последним будет вставлен нуль-символ \0 .

Как вывести строку

Дополним код выше до полноценной программы, которая будет выводить созданные строки на экран.

Листинг 2.

#include int main(void) { char str; char str1 = {"Y","o","n","g","C","o","d","e","r","\0"}; char str2 = "Hello!"; char str3 = "Hello!"; for(int i = 0; i < 10; i = i + 1) printf("%c\t",str[i]); printf("\n"); puts(str1); printf("%s\n",str2); puts(str3); return 0; }


Рис.2 Различные способы вывода строки на экран

Как видите, есть несколько основных способов вывести строку на экран.

  • использовать функцию printf со спецификатором %s
  • использовать функцию puts
  • использовать функцию fputs , указав в качестве второго параметра стандартный поток для вывода stdout .

Единственный нюанс у функций puts и fputs . Обратите внимание, что функция puts переносит вывод на следующую строку, а функция fputs не переносит.

Как видите, с выводом всё достаточно просто.

Ввод строк

С вводом строк всё немного сложнее, чем с выводом. Простейшим способом будет являться следующее:

Листинг 3.

#include int main(void) { char str; gets(str); puts(str); return 0; }

Функция gets приостанавливает работу программы, читает строку символов, введенных с клавиатуры, и помещает в символьный массив, имя которого передаётся функции в качестве параметра.
Завершением работы функции gets будет являться символ, соответствующий клавише ввод и записываемый в строку как нулевой символ.
Заметили опасность? Если нет, то о ней вас любезно предупредит компилятор. Дело в том, что функция gets завершает работу только тогда, когда пользователь нажимает клавишу ввод. Это чревато тем, что мы можем выйти за рамки массива, в нашем случае - если введено более 20 символов.
К слову, ранее ошибки переполнения буфера считались самым распространенным типом уязвимости. Они встречаются и сейчас, но использовать их для взлома программ стало гораздо сложнее.

Итак, что мы имеем. У нас есть задача: записать строку в массив ограниченного размера. То есть, мы должны как-то контролировать количество символов, вводимых пользователем. И тут нам на помощь приходит функция fgets :

Листинг 4.

#include int main(void) { char str; fgets(str, 10, stdin); puts(str); return 0; }

Функция fgets принимает на вход три аргумента: переменную для записи строки, размер записываемой строки и имя потока, откуда взять данные для записи в строку, в данном случае - stdin . Как вы уже знаете из 3 урока, stdin – это стандартный поток ввода данных, обычно связанный с клавиатурой. Совсем необязательно данные должны поступать именно из потока stdin , в дальнейшем эту функцию мы также будем использовать для чтения данных из файлов.

Если в ходе выполнения этой программы мы введем строку длиннее, чем 10 символов, в массив все равно будут записаны только 9 символов с начала и символ переноса строки, fgets «обрежет» строку под необходимую длину.

Обратите внимание, функция fgets считывает не 10 символов, а 9 ! Как мы помним, в строках последний символ зарезервирован для нуль-символа.

Давайте это проверим. Запустим программу из последнего листинга. И введём строку 1234567890 . На экран выведется строка 123456789 .


Рис.3 Пример работы функции fgets

Возникает вопрос. А куда делся десятый символ? А я отвечу. Он никуда не делся, он остался в потоке ввода. Выполните следующую программу.

Листинг 5.

#include int main(void) { char str; fgets(str, 10, stdin); puts(str); int h = 99; printf("do %d\n", h); scanf("%d",&h); printf("posle %d\n", h); return 0; }

Вот результат её работы.


Рис.4 Непустой буфер stdin

Поясню произошедшее. Мы вызвали функцию fgets . Она открыла поток ввода и дождалась пока мы введём данные. Мы ввели с клавиатуры 1234567890\n (\n я обозначаю нажатие клавиша Enter ). Это отправилось в поток ввода stdin . Функция fgets , как и полагается, взяла из потока ввода первые 9 символов 123456789 , добавила к ним нуль-символ \0 и записала это в строку str . В потоке ввода осталось ещё 0\n .

Далее мы объявляем переменную h . Выводим её значение на экран. После чего вызываем функцию scanf . Тут-то ожидается, что мы можем что-то ввести, но т.к. в потоке ввода висит 0\n , то функция scanf воспринимает это как наш ввод, и записывается 0 в переменную h . Далее мы выводим её на экран.

Это, конечно, не совсем такое поведение, которое мы ожидаем. Чтобы справиться с этой проблемой, необходимо очистить буфер ввода после того, как мы считали из него строку, введённую пользователем. Для этого используется специальная функция fflush . У неё всего один параметр – поток, который нужно очистить.

Исправим последний пример так, чтобы его работа была предсказуемой.

Листинг 6.

#include int main(void) { char str; fgets(str, 10, stdin); fflush(stdin); // очищаем поток ввода puts(str); int h = 99; printf("do %d\n", h); scanf("%d",&h); printf("posle %d\n", h); return 0; }

Теперь программа будет работать так, как надо.


Рис.4 Сброс буфера stdin функцией fflush

Подводя итог, можно отметить два факта. Первый. На данный момент использование функции gets является небезопасным, поэтому рекомендуется везде использовать функцию fgets .

Второй. Не забывайте очищать буфер ввода, если используете функцию fgets .

На этом разговор о вводе строк закончен. Идём дальше.

Хабра, привет!

Не так давно у со мной произошел довольно-таки интересный инцидент, в котором был замешан один из преподавателей одного колледжа информатики.

Разговор о программировании под Linux медленно перешел к тому, что этот человек стал утверждать, что сложность системного программирования на самом деле сильно преувеличена. Что язык Си прост как спичка, собственно как и ядро Linux (с его слов).

У меня был с собой ноутбук с Linux, на котором присутствовал джентльменский набор утилит для разработки на языке Си (gcc, vim, make, valgrind, gdb). Я уже не помню, какую цель мы тогда перед собой поставили, но через пару минут мой оппонент оказался за этим ноутбуком, полностью готовый решать задачу.

И буквально на первых же строках он допустил серьезную ошибку при аллоцировании памяти под… строку.

Char *str = (char *)malloc(sizeof(char) * strlen(buffer));
buffer - стековая переменная, в которую заносились данные с клавиатуры.

Я думаю, определенно найдутся люди, которые спросят: «Разве что-то тут может быть не так?».
Поверьте, может.

А что именно - читайте по катом.

Немного теории - своеобразный ЛикБез.

Если знаете - листайте до следующего хэдера.

Строка в C - это массив символов, который по-хорошему всегда должен заканчиваться "\0" - символом конца строки. Строки на стеке (статичные) объявляются вот так:

Char str[n] = { 0 };
n - размер массива символов, то же, что и длина строки.

Присваивание { 0 } - «зануление» строки (опционально, объявлять можно и без него). Результат такой же, как у выполнения функций memset(str, 0, sizeof(str)) и bzero(str, sizeof(str)). Используется, чтобы в неинициализированных переменных не валялся мусор.

Так же на стеке можно сразу проинициализировать строку:

Char buf = "default buffer text\n";
Помимо этого строку можно объявить указателем и выделить под нее память на куче (heap):

Char *str = malloc(size);
size - количество байт, которые мы выделяем под строку. Такие строки называются динамическими (вследствие того, что нужный размер вычисляется динамически + выделенный размер памяти можно в любой момент увеличить с помощью функции realloc()).

В случае со стековой переменной, для определения размера массива я использовал обозначение n, в случае с переменной на куче - я использовал обозначение size. И это прекрасно отражает истинную суть отличия объявления на стеке от объявление с аллоцированием памяти на куче, ведь n как правило используется тогда, когда говорят о количестве элементов. А size - это уже совсем другая история…

Нам поможет valgrind

В своей предыдущей статье я также упоминал о нем. Valgrind ( , два - небольшой how-to) - очень полезная программа, которая помогает программисту отслеживать утечки памяти и ошибки контекста - как раз те вещи, которые чаще всего всплывают при работе со строками.

Давайте рассмотрим небольшой листинг, в котором реализовано что-то похожее на упомянутую мной программу, и прогоним ее через valgrind:

#include #include #include #define HELLO_STRING "Hello, Habr!\n" void main() { char *str = malloc(sizeof(char) * strlen(HELLO_STRING)); strcpy(str, HELLO_STRING); printf("->\t%s", str); free(str); }
И, собственно, результат работы программы:

$ gcc main.c $ ./a.out -> Hello, Habr!
Пока ничего необычного. А теперь давайте запустим эту программу с valgrind!

$ valgrind --tool=memcheck ./a.out ==3892== Memcheck, a memory error detector ==3892== Copyright (C) 2002-2015, and GNU GPL"d, by Julian Seward et al. ==3892== Using Valgrind-3.12.0 and LibVEX; rerun with -h for copyright info ==3892== Command: ./a.out ==3892== ==3892== Invalid write of size 2 ==3892== at 0x4005B4: main (in /home/indever/prg/C/public/a.out) ==3892== Address 0x520004c is 12 bytes inside a block of size 13 alloc"d ==3892== at 0x4C2DB9D: malloc (vg_replace_malloc.c:299) ==3892== by 0x400597: main (in /home/indever/prg/C/public/a.out) ==3892== ==3892== Invalid read of size 1 ==3892== at 0x4C30BC4: strlen (vg_replace_strmem.c:454) ==3892== by 0x4E89AD0: vfprintf (in /usr/lib64/libc-2.24.so) ==3892== by 0x4E90718: printf (in /usr/lib64/libc-2.24.so) ==3892== by 0x4005CF: main (in /home/indever/prg/C/public/a.out) ==3892== Address 0x520004d is 0 bytes after a block of size 13 alloc"d ==3892== at 0x4C2DB9D: malloc (vg_replace_malloc.c:299) ==3892== by 0x400597: main (in /home/indever/prg/C/public/a.out) ==3892== -> Hello, Habr! ==3892== ==3892== HEAP SUMMARY: ==3892== in use at exit: 0 bytes in 0 blocks ==3892== total heap usage: 2 allocs, 2 frees, 1,037 bytes allocated ==3892== ==3892== All heap blocks were freed -- no leaks are possible ==3892== ==3892== For counts of detected and suppressed errors, rerun with: -v ==3892== ERROR SUMMARY: 3 errors from 2 contexts (suppressed: 0 from 0)
==3892== All heap blocks were freed - no leaks are possible - утечек нет, и это радует. Но стоит опустить глаза чуть пониже (хотя, хочу заметить, это лишь итог, основная информация немного в другом месте):

==3892== ERROR SUMMARY: 3 errors from 2 contexts (suppressed: 0 from 0)
3 ошибки. В 2х контекстах. В такой простой программе. Как!?

Да очень просто. Весь «прикол» в том, что функция strlen не учитывает символ конца строки - "\0". Даже если его явно указать во входящей строке (#define HELLO_STRING «Hello, Habr!\n\0»), он будет проигнорирован.

Чуть выше результата исполнения программы, строки -> Hello, Habr! есть подробный отчет, что и где не понравилось нашему драгоценному valgrind. Предлагаю самостоятельно посмотреть эти строчки и сделать выводы.

Собственно, правильная версия программы будет выглядеть так:

#include #include #include #define HELLO_STRING "Hello, Habr!\n" void main() { char *str = malloc(sizeof(char) * (strlen(HELLO_STRING) + 1)); strcpy(str, HELLO_STRING); printf("->\t%s", str); free(str); }
Пропускаем через valgrind:

$ valgrind --tool=memcheck ./a.out -> Hello, Habr! ==3435== ==3435== HEAP SUMMARY: ==3435== in use at exit: 0 bytes in 0 blocks ==3435== total heap usage: 2 allocs, 2 frees, 1,038 bytes allocated ==3435== ==3435== All heap blocks were freed -- no leaks are possible ==3435== ==3435== For counts of detected and suppressed errors, rerun with: -v ==3435== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
Отлично. Ошибок нет, +1 байт выделяемой памяти помог решить проблему.

Что интересно, в большинстве случаев и первая и вторая программа будут работать одинаково, но если память, выделенная под строку, в которую не влез символ окончания, не была занулена, то функция printf(), при выводе такой строки, выведет и весь мусор после этой строки - будет выведено все, пока на пути printf() не встанет символ окончания строки.

Однако, знаете, (strlen(str) + 1) - такое себе решение. Перед нами встают 2 проблемы:

  1. А если нам надо выделить память под формируемую с помощью, например, s(n)printf(..) строку? Аргументы мы не поддерживаем.
  2. Внешний вид. Строка с объявлением переменной выглядит просто ужасно. Некоторые ребята к malloc еще и (char *) умудряются прикручивать, будто под плюсами пишут. В программе где регулярно требуется обрабатывать строки есть смысл найти более изящное решение.
Давайте придумаем такое решение, которое удовлетворит и нас, и valgrind.

snprintf()

int snprintf(char *str, size_t size, const char *format, ...); - функция - расширение sprintf, которая форматирует строку и записывает ее по указателю, переданному в качестве первого аргумента. От sprintf() она отличается тем, что в str не будет записано байт больше, чем указано в size.

Функция имеет одну интересную особенность - она в любом случае возвращает размер формируемой строки (без учета символа конца строки). Если строка пустая, то возвращается 0.

Одна из описанных мною проблем использования strlen связана с функциями sprintf() и snprintf(). Предположим, что нам надо что-то записать в строку str. Конечная строка содержит значения других переменных. Наша запись должна быть примерно такой:

Char * str = /* тут аллоцируем память */; sprintf(str, "Hello, %s\n", "Habr!");
Встает вопрос: как определить, сколько памяти надо выделить под строку str?

Char * str = malloc(sizeof(char) * (strlen(str, "Hello, %s\n", "Habr!") + 1)); - не прокатит. Прототип функции strlen() выглядит так:

#include size_t strlen(const char *s);
const char *s не подразумевает, что передаваемая в s строка может быть строкой формата с переменным количеством аргументов.

Тут нам поможет то полезное свойство функции snprintf(), о котором я говорил выше. Давайте посмотрим на код следующей программы:

#include #include #include void main() { /* Т.к. snprintf() не учитывает символ конца строки, прибавляем его размер к результату */ size_t needed_mem = snprintf(NULL, 0, "Hello, %s!\n", "Habr") + sizeof("\0"); char *str = malloc(needed_mem); snprintf(str, needed_mem, "Hello, %s!\n", "Habr"); printf("->\t%s", str); free(str); }
Запускаем программу в valgrind:

$ valgrind --tool=memcheck ./a.out -> Hello, Habr! ==4132== ==4132== HEAP SUMMARY: ==4132== in use at exit: 0 bytes in 0 blocks ==4132== total heap usage: 2 allocs, 2 frees, 1,041 bytes allocated ==4132== ==4132== All heap blocks were freed -- no leaks are possible ==4132== ==4132== For counts of detected and suppressed errors, rerun with: -v ==4132== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0) $
Отлично. Поддержка аргументов у нас есть. Благодаря тому, что мы в качестве второго аргумента в функцию snprintf() передаем ноль, запись по нулевому указателю никогда не приведет к Seagfault. Однако, несмотря на это функция все равно вернет необходимый под строку размер.

Но с другой стороны, нам пришлось завести дополнительную переменную, да и конструкция

Size_t needed_mem = snprintf(NULL, 0, "Hello, %s!\n", "Habr") + sizeof("\0");
выглядит еще хуже, чем в случае с strlen().

Вообще, + sizeof("\0") можно убрать, если в конце строки формата явно указать "\0" (size_t needed_mem = snprintf(NULL, 0, «Hello, %s!\n\0 », «Habr»);), но это возможно отнюдь не всегда (в зависимости от механизма обработки строк мы можем выделить лишний байт).

Надо что-то сделать. Я немного подумал и решил, что сейчас настал час воззвать к мудрости древних. Опишем макрофункцию, которая будет вызывать snprintf() с нулевым указателем в качестве первого аргумента, и нулем, в качестве второго. Да и про конец строки не забудем!

#define strsize(args...) snprintf(NULL, 0, args) + sizeof("\0")
Да, возможно, для кого-то будет новостью, но макросы в си поддерживают переменное количество аргументов, и троеточие говорит препроцессору о том, что указанному аргументу макрофункции (в нашем случае это args) соответствует несколько реальных аргументов.

Проверим наше решение на практике:

#include #include #include #define strsize(args...) snprintf(NULL, 0, args) + sizeof("\0") void main() { char *str = malloc(strsize("Hello, %s\n", "Habr!")); sprintf(str, "Hello, %s\n", "Habr!"); printf("->\t%s", str); free(str); }
Запускаем с valgrund:

$ valgrind --tool=memcheck ./a.out -> Hello, Habr! ==6432== ==6432== HEAP SUMMARY: ==6432== in use at exit: 0 bytes in 0 blocks ==6432== total heap usage: 2 allocs, 2 frees, 1,041 bytes allocated ==6432== ==6432== All heap blocks were freed -- no leaks are possible ==6432== ==6432== For counts of detected and suppressed errors, rerun with: -v ==6432== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
Да, ошибок нет. Все корректно. И valgrind доволен, и программист наконец может пойти поспать.

Но, напоследок, скажу еще кое-что. В случае, если нам надо выделить память под какую-либо строку (даже с аргументами) есть уже полностью рабочее готовое решение .

Речь идет о функции asprintf:

#define _GNU_SOURCE /* See feature_test_macros(7) */ #include int asprintf(char **strp, const char *fmt, ...);
В качестве первого аргумента она принимает указатель на строку (**strp) и аллоцирует память по разыменованному указателю.

Наша программа, написанная с использованием asprintf() будет выглядеть так:

#include #include #include void main() { char *str; asprintf(&str, "Hello, %s!\n", "Habr"); printf("->\t%s", str); free(str); }
И, собственно, в valgrind:

$ valgrind --tool=memcheck ./a.out -> Hello, Habr! ==6674== ==6674== HEAP SUMMARY: ==6674== in use at exit: 0 bytes in 0 blocks ==6674== total heap usage: 3 allocs, 3 frees, 1,138 bytes allocated ==6674== ==6674== All heap blocks were freed -- no leaks are possible ==6674== ==6674== For counts of detected and suppressed errors, rerun with: -v ==6674== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
Все отлично, но, как видите, памяти всего было выделено больше, да и alloc"ов теперь три, а не два. На слабых встраиваемых системах использование это функции нежелательно.
К тому же, если мы напишем в консоли man asprintf, то увидим:

CONFORMING TO These functions are GNU extensions, not in C or POSIX. They are also available under *BSD. The FreeBSD implementation sets strp to NULL on error.

Отсюда ясно, что данная функция доступна только в исходниках GNU.

Заключение

В заключение я хочу сказать, что работа со строками в C - это очень сложная тема, которая имеет ряд нюансов. Например, для написания «безопасного» кода при динамическом выделении памяти рекомендуется все же использовать функцию calloc() вместо malloc() - calloc забивает выделяемую память нулями. Ну или после выделения памяти использовать функцию memset(). Иначе мусор, который изначально лежал на выделяемом участке памяти, может вызвать вопросы при дебаге, а иногда и при работе со строкой.

Больше половины моих знакомых си-программистов (большинство из них - начинающие), решивших по моей просьбе задачу с выделением памяти под строки, сделали это так, что в конечном итоге это привело к ошибкам контекста. В одном случае - даже к утечке памяти (ну, забыл человек сделать free(str), с кем не бывает). Собственно говоря, это и сподвигло меня на создание сего творения, которое вы только что прочитали.

Я надеюсь, кому-то эта статья будет полезной. К чему я это все городил - никакой язык не бывает прост. Везде есть свои тонкости. И чем больше тонкостей языка вы знаете, тем лучше ваш код.

Я верю, что после прочтения этой статьи ваш код станет чуточку лучше:)
Удачи, Хабр!

Строки. Ввод-вывод строк. Форматированный ввод-вывод. Обработка строк с использованием стандартных функций языка С. Работа с памятью.

1.1. Объявление и инициализация строк.

Строкой называется массив символов, который заканчивается пустым символом ‘\0’. Строка объявляется как обычный символьный массив, например,

char s1; // строка длиной в девять символов

char *s2; // указатель на строку

Различие между указателями s1 и s2 заключается в том, что указатель s1 является именованной константой, а указатель s2 – переменной.

Строковые константы заключаются в двойные кавычки в отличие от символов, которые заключаются в одинарные кавычки. Например,

“This is a string.”

Длина строковой константы не может превышать 509 символов по стандарту. Однако, многие реализации допускают строки большей длины.

При инициализации строк размерность массива лучше не указывать, это выполнит компилятор, подсчитав длину строки и добавив к ней единицу. Например,

char s1 = “This is a string.”;

В языке программирования С для работы со строками существует большое количество функций, прототипы которых описаны в заголовочных файлах stdlib.h и string.h. Работа с этими функциями будет рассмотрена в следующих параграфах.

1.2. Ввод-вывод строк.

Для ввода строки с консоли служит функция

char* gets (char *str);

которая записывает строку по адресу str и возвращает адрес введенной строки. Функция прекращает ввод, если встретит символ ‘\n’ или EOF (конец файла). Символ перехода на новую строку не копируется. В конец прочитанной строки помещается нулевой байт. В случае успеха функция возвращает указатель на прочитанную строку, а в случае неудачи NULL.

Для вывода строки на консоль служит стандартная функция

int puts (const char *s);

которая в случае удачи возвращает неотрицательное число, а в случае неудачи – EOF.

Прототипы функций gets и puts описаны в заголовочном файле stdio.h.

#include

printf("Input String: ");

1.3. Форматированный ввод-вывод.

Для форматированного ввода данных с консоли используется функция

int scanf (const char *format, …);

которая в случае успешного завершения возвращает количество единиц прочитанных данных, а в случае неудачи – EOF. Параметр format должен указывать на форматируемую строку, которая содержит спецификации форматов ввода. Количество и типы аргументов, которые следуют после строки форматирования, должны соответствовать количеству и типам форматов ввода, заданным в строке форматирования. Если это условие не выполняется, то результат работы функции непредсказуем.

Пробел, символы "\t" или "\n" в форматной строке описывают один или более пустых символов во входном потоке, к которым относятся символы: пробел, ‘\t’, ‘\n’, ‘\v’, ‘\f’. Функция scanf пропускает пустые символы во входном потоке.

Литеральные символы в форматной строке, за исключением символа %, требуют, чтобы во входном потоке появились точно такие же символы. Если такого символа нет, то функция scanf прекращает ввод. Функция scanf пропускает литеральные символы.

В общем случае спецификация формата ввода имеет вид:

%[*] [ширина] [модификаторы] тип

Символ ‘*’ обозначает пропуск при вводе поля, определенного данной спецификацией;

- ‘ширина’ определяет максимальное число символов, вводимых по данной спецификации;

Тип может принимать следующие значения:

c – символьный массив,

s – строка символов, строки разделяются пустыми символами,

d – целое число со знаком в 10 с/c,

i – целое число со знаком, система счисления завит от двух первых цифр,

u – целое число без знака в 10 с/с,

o – целое число без знака в 8 с/c,

х, Х – целое число без знака в 16 с/с,

e, E, f, g, G – плавающее число,

p – указатель на указатель,

n – указатель на целое,

[…] – массив сканируемых символов, например, .

В последнем случае из входного потока будут вводиться только символы, заключенные в квадратные скобки. Если первый символ внутри квадратных скобок равен ‘^’, то вводятся только те символы, которые не входят в массив. Диапазон символов в массиве задается через символ ‘-‘. При вводе символов ведущие пустые символы и завершающий нулевой байт строки также вводятся.

Модификаторы могут принимать следующие значения:

h – короткое целое,

l, L – длинное целое или плавающее,

и используются только для целых или плавающих чисел.

В следующем примере показаны варианты использования функции scanf. Обратите внимание, что перед спецификатором формата, начиная с ввода плавающего числа, стоит символ пробел.

#include

printf("Input an integer: ");

scanf("%d", &n);

printf("Input a double: ");

scanf(" %lf", &d);

printf("Input a char: ");

scanf(" %c", &c);

printf("Input a string: ");

scanf(" %s", &s);

Обратите внимание, что в этой программе число с плавающей точкой проинициализировано. Это сделано для того, чтобы компилятор подключил библиотеку для поддержки работы с плавающими числами. Если этого не сделать, то на этапе выполнения при вводе плавающего числа произойдет ошибка.

Для форматированного вывода данных на консоль используется функция

int printf (const char *format, …);

которая в случае успешного завершения возвращает количество единиц выведенных данных, а в случае неудачи – EOF. Параметр format представляет собой форматируемую строку, которая содержит спецификации форматов вывода. Количество и типы аргументов, которые следуют после строки форматирования, должны соответствовать количеству и типам спецификациям формата вывода, заданным в строке форматирования. В общем случае спецификация формата вывода имеет вид:

%[флаги] [ширина] [.точность] [модификаторы] тип

- ‘флаги’ – это различные символы, уточняющие формат вывода;

- ‘ширина’ определяет минимальное количество символов, выводимых по данной спецификации;

- ‘.точность’ определяет максимальное число выводимых символов;

- ‘модификаторы’ уточняют тип аргументов;

- ‘тип’ определяет тип аргумента.

Для вывода целых чисел со знаком используется следующий формат вывода:

%[-] [+ | пробел] [ширина] [l] d

- – выравнивание влево, по умолчанию – вправо;

+ – выводится знак ‘+’, заметим, что для отрицательных чисел всегда выводится знак ‘-‘;

‘пробел’ – в позиции знака выводится пробел;

d – тип данных int.

Для вывода целых чисел без знака используется следующий формат вывода:

%[-] [#] [ширина] [l]

# – выводится начальный 0 для чисел в 8 c/c или начальные 0x или 0X для чисел в 16 c/c,

l – модификатор типа данных long;

u – целое число в 10c/c,

o – целое число в 8 c/c,

x, X – целое число в 16 c/c.

Для вывода чисел с плавающей точкой используется следующий формат вывода:

%[-] [+ | пробел] [ширина] [.точность]

"точность" – обозначает число цифр после десятичной точки для форматов f, e и E или число значащих цифр для форматов g и G. Числа округляются отбрасыванием. По умолчанию принимается точность в шесть десятичных цифр;

f – число с фиксированной точкой,

e – число в экспоненциальной форме, экспонента обозначается буквой "e",

E – число в экспоненциальной форме, экспонента обозначается буквой "E",

g – наиболее короткий из форматов f или g,

G – наиболее короткий из форматов f или G.

printf ("n = %d\n f = %f\n e = %e\n E = %E\n f = %.2f", -123, 12.34, 12.34, 12.34, 12.34);

// печатает: n = 123 f = 12.340000 e = 1.234000e+001 E = 1.234000E+001 f = 12.34

1.4. Форматирование строк.

Существуют варианты функций scanf и printf, которые предназначены для форматирования строк и называются соответственно sscanf и sprintf.

int sscanf (const char *str, const char *format, …);

читает данные из строки, заданной параметром str, в соответствии с форматной строкой, заданной параметром format. В случае удачи возвращает количество прочитанных данных, а в случае неудачи – EOF. Например,

#include

char str = "a 10 1.2 String No input";

sscanf(str, "%c %d %lf %s", &c, &n, &d, s);

printf("%c\n", c); // печатает: a

printf("%d\n", n); // печатает: 10

printf("%f\n", d); // печатает: 1.200000

printf("%s\n", s); // печатает: String

int sprintf (char *buffer, const char *format, …);

форматирует строку в соответствии с форматом, который задан параметром format и записывает полученный результат в символьный массив buffer. Возвращает функция количество символов, записанных в символьный массив buffer, исключая завершающий нулевой байт. Например,

#include

char str = "c = %c, n = %d, d = %f, s = %s";

char s = "This is a string.";

sprintf(buffer, str, c, n, d, s);

printf("%s\n", buffer); // печатает: c = c, n = 10, d = 1.200000, s = This is a string

1.5. Преобразование строк в числовые данные.

Прототипы функций преобразования строк в числовые данные приведены в заголовочном файле stdlib.h, который нужно включить в программу.

Для преобразования строки в целое число используется функция

int atoi (const char *str);

char *str = “-123”;

n = atoi (str); // n = -123

Для преобразования строки в длинное целое число используется функция

long int atol (const char *str);

которая в случае успешного завершения возвращает целое число, в которое преобразована строка str, а в случае – неудачи 0. Например,

char *str = “-123”;

n = atol (str); // n = -123

Для преобразования строки в число типа double используется функция

double atof (const char *str);

которая в случае успешного завершения возвращает плавающее число типа double, в которое преобразована строка str, а в случае – неудачи 0. Например,

char *str = “-123.321”;

n = atof (str); // n = -123.321

Следующие функции выполняют действия, аналогичные функциям atoi, atol, atof, но предоставляют более широкие возможности.

long int strtol (const char *str, char **endptr, int base);

преобразует строку str в число типа long int, которое и возвращает. Параметры этой функции имеют следующее назначение.

Если аргумент base равен 0, то преобразование зависит от первых двух символов строки str:

Если первый символ – цифра от 1 до 9, то предполагается, что число представлено в 10 c/c;

Если первый символ – цифра 0, а второй – цифра от 1 до 7, то предполагается, что число представлено в 8 c/c;

Если первый символ 0, а второй – ‘Х’ или ‘х’, то предполагается, что число представлено в 16 c/c.

Если аргумент base равен числу от 2 до 36, то это значение принимается за основание системы счисления и любой символ, выходящий за рамки этой системы, прекращает преобразование. В системах счисления с основанием от 11 до 36 для обозначения цифр используются символы от ‘A’ до ‘Z’ или от ‘a’ до ‘z’.

Значение аргумента endptr устанавливается функцией strtol. Это значение содержит указатель на символ, который остановил преобразование строки str. В случае успешного завершения функция strtol возвращает преобразованное число, а в случае неудачи – 0. Например,

n = strtol (“12a”, &p, 0);

printf (“ n = %ld, %stop = %c, n, *p); // n = 12, stop = a

n = strtol (“012b”, &p, 0);

printf (“ n = %ld, %stop = %c, n, *p); // n = 10, stop = b

n = strtol (“0x12z”, &p, 0);

printf (“ n = %ld, %stop = %c, n, *p); // n = 18, stop = z

n = strtol (“01117”, &p, 0);

printf (“ n = %ld, %stop = %c, n, *p); // n = 7, stop = 7

unsigned long int strtol (const char *str, char **endptr, int base);

работает аналогично функции strtol, но преобразует символьное представление числа в число типа unsigned long int.

double strtod (const char *str, char **endptr);

преобразует символьное представление числа в число типа double.

Все функции, перечисленные в этом параграфе, прекращают свою работу при встрече первого символа, который не подходит под формат рассматриваемого числа.

Кроме того, в случае если символьное значение числа превосходит диапазон допустимых значений для соответствующего типа данных, то функции atof, strtol, strtoul, strtod устанавливают значение переменной errno в ERANGE. Переменная errno и константа ERANGE определены в заголовочном файле math.h. При этом функции atof и strtod возвращают значение HUGE_VAL, функция strtol возвращает значение LONG_MAX или LONG_MIN, а функция strtoul – значение ULONG_MAX.

Для преобразования числовых данных в символьные строки могут использоваться нестандартные функции itoa, ltoa, utoa, ecvt, fcvt и gcvt. Но лучше для этих целей использовать стандартную функцию sprintf.

1.6. Стандартные функции для работы со строками.

В этом параграфе рассмотрены функции для работы со строками, прототипы которых описаны в заголовочном файле string.h.

1. Сравнение строк. Для сравнения строк используются функции strcmp и strncmp.

int strcmp (const char *str1, const char *str2);

лексикографически сравнивает строки str1, str2 и возвращает –1, 0 или 1, если строка str1 соответственно меньше, равна или больше строки str2.

int strncmp (const char *str1, const char *str2, size_t n);

лексикографически сравнивает не более чем n первых символов из строк str1 и str2. Функция возвращает –1, 0 или 1, если первые n символов из строки str1 соответственно меньше, равны или больше первых n символов из строки str2.

// пример сравнения строк

#include

#include

char str1 = "aa bb";

char str2 = "aa aa";

char str3 = "aa bb cc";

printf("%d\n", strcmp(str1, str3)); // печатает: -1

printf("%d\n", strcmp(str1, str1)); // печатает: -0

printf("%d\n", strcmp(str1, str2)); // печатает: 1

printf("%d\n", strncmp(str1, str3, 5)); // печатает: 0

2. Копирование строк. Для копирования строк используются функции strcpy и strncpy.

char *strcpy (char *str1, const char *str2);

копирует строку str2 в строку str1. Строка str2 копируется полностью, включая завершающий нулевой байт. Функция возвращает указатель на str1. Если строки перекрываются, то результат непредсказуем.

char *strncpy (char *str1, const char *str2, size_t n);

копирует n символов из строки str2 в строку str1. Если строка str2 содержит меньше чем n символов, то последний нулевой байт копируется столько раз, сколько нужно для расширения строки str2 до n символов. Функция возвращает указатель на строку str1.

char str2 = "Copy string.";

strcpy (str1, str2);

printf (str1); // печатает: Copy string.

4. Соединение строк. Для соединения строк в одну строку используются функции strcat и strncat.

char* strcat (char *str1, const char *str2);

присоединяет строку str2 к строке str1, причем завершающий нулевой байт строки str1 стирается. Функция возвращает указатель на строку str1.

char* strncat (char *str1, const char *str2, size_t n);

присоединяет n символов из строки str2 к строке str1, причем завершающий нулевой байт строки str1 стирается. Функция возвращает указатель на строку str1. если длина строки str2 меньше n, то присоединяются только символы, входящие в строку str2. После соединения строк к строке str1 всегда добавляется нулевой байт. Функция возвращает указатель на строку str1.

#include

#include

char str1 = "String ";

char str2 = "catenation ";

char str3 = "Yes No";

strcat (str1, str2);

printf ("%s\n", str1); // печатает: String catenation

strncat (str1, str3, 3);

printf ("%s\n", str1); // печатает: String catenation Yes

5. Поиск символа в строке. Для поиска символа в строке используются функции strchr, strrchr, strspn, strcspn и strpbrk.

char* strchr (const char *str, int c);

ищет первое вхождение символа, заданного параметром c, в строку str. В случае успеха функция возвращает указатель на первый найденный символ, а в случае неудачи – NULL.

char* strrchr (const char *str, int c);

ищет последнее вхождение символа, заданного параметром c, в строку str. В случае успеха функция возвращает указатель на последний найденный символ, а в случае неудачи – NULL.

#include

#include

char str = "Char search";

printf ("%s\n", strchr (str, "r")); // печатает: r search

printf ("%s\n", strrchr (str, "r")); // печатает: rch

size_t strspn (const char *str1, const char *str2);

возвращает индекс первого символа из строки str1, который не входит в строку str2.

size_t strcspn (const char *str1, const char *str2);

возвращает индекс первого символа из строки str1, который входит в строку str2.

char str = "123 abc";

printf ("n = %d\n", strspn (str, "321"); // печатает: n = 3

printf ("n = %d\n", strcspn (str, "cba"); // печатает: n = 4

char* strpbrk (const char *str1, const char *str2);

находит первый символ в строке str1, который равен одному из символов в строке str2. В случае успеха функция возвращает указатель на этот символ, а в случае неудачи – NULL.

char str = "123 abc";

printf ("%s\n", strpbrk (str, "bca")); // печатает: abc

6. Сравнение строк. Для сравнения строк используются функция strstr.

char* strstr (const char *str1, const char *str2);

находит первое вхождение строки str2 (без конечного нулевого байта) в строку str1. В случае успеха функция возвращает указатель на найденную подстроку, а в случае неудачи – NULL. Если указатель str1 указывает на строку нулевой длины, то функция возвращает указатель str1.

char str = "123 abc 456;

printf ("%s\n", strstr (str, "abc"); // печать: abc 456

7. Разбор строки на лексемы. Для разбора строки на лексемы используется функция strtok.

char* strtok (char *str1, const char *str2);

возвращает указатель на следующую лексему (слово) в строке str1, в которой разделителями лексем являются символы из строки str2. В случае если лексемы закончились, то функция возвращает NULL. При первом вызове функции strtok параметр str1 должен указывать на строку, которая разбирается на лексемы, а при последующих вызовах этот параметр должен быть установлен в NULL. После нахождения лексемы функция strtok записывает после этой лексемы на место разделителя нулевой байт.

#include

#include

char str = "12 34 ab cd";

p = strtok (str, " ");

printf ("%s\n", p); // печатает в столбик значения: 12 34 ab cd

p = strtok (NULL, " ");

8. Определение длины строки. Для определения длины строки используется функция strlen.

size_t strlen (const char *str);

возвращает длину строки, не учитывая последний нулевой байт. Например,

char str = "123";

printf ("len = %d\n", strlen (str)); // печатает: len = 3

1.7. Функции для работы с памятью.

В заголовочном файле string.h описаны также функции для работы с блоками памяти, которые аналогичны соответствующим функциям для работы со строками.

void* memchr (const void *str, int c, size_t n);

ищет первое вхождение символа, заданного параметром c, в n байтах строки str.

int memcmp (const void *str1, const void *str2, size_t n);

сравнивает первые n байт строк str1 и str2.

void* memcpy (const void *str1, const void *str2, size_t n);

копирует первые n байт из строки str1 в строку str2.

void* memmove (const void *str1, const void *str2, size_t n);

копирует первые n байт из строки str1 в строку str2, обеспечивая корректную обработку перекрывающихся строк.

void* memset (const void *str, int c, size_t n);

копирует символ, заданный параметром c, в первые n байтов строки str.

34

--- Руководство по C# --- Строки

С точки зрения регулярного программирования строковый тип данных string относится к числу самых важных в C#. Этот тип определяет и поддерживает символьные строки. В целом ряде других языков программирования строка представляет собой массив символов. А в C# строки являются объектами. Следовательно, тип string относится к числу ссылочных.

Построение строк

Самый простой способ построить символьную строку - воспользоваться строковым литералом . Например, в следующей строке кода переменной ссылки на строку str присваивается ссылка на строковый литерал:

String str = "Пример строки";

В данном случае переменная str инициализируется последовательностью символов "Пример строки". Объект типа string можно также создать из массива типа char. Например:

Char chararray = {"e", "x", "a", "m", "p", "l", "e"}; string str = new string(chararray);

Как только объект типа string будет создан, его можно использовать везде, где только требуется строка текста, заключенного в кавычки.

Постоянство строк

Как ни странно, содержимое объекта типа string не подлежит изменению. Это означает, что однажды созданную последовательность символов изменить нельзя. Но данное ограничение способствует более эффективной реализации символьных строк. Поэтому этот, на первый взгляд, очевидный недостаток на самом деле превращается в преимущество. Так, если требуется строка в качестве разновидности уже имеющейся строки, то для этой цели следует создать новую строку, содержащую все необходимые изменения. А поскольку неиспользуемые строковые объекты автоматически собираются в "мусор", то о дальнейшей судьбе ненужных строк можно даже не беспокоиться.

Следует, однако, подчеркнуть, что переменные ссылки на строки (т.е. объекты типа string) подлежат изменению, а следовательно, они могут ссылаться на другой объект. Но содержимое самого объекта типа string не меняется после его создания.

Рассмотрим пример:

Static void addNewString() { string s = "This is my stroke"; s = "This is new stroke"; }

Скомпилируем приложение и загрузим результирующую сборку в утилиту ildasm.exe . На рисунке показан CIL-код, который будет сгенерирован для метода void addNewString():

Обратите внимание на наличие многочисленных вызовов кода операции ldstr (загрузка строки). Этот код операции ldstr в CIL предусматривает выполнение загрузки нового объекта string в управляемую кучу. В результате предыдущий объект, в котором содержалось значение "This is my stroke", будет в конечном итоге удален сборщиком мусора.

Работа со строками

В классе System.String предоставляется набор методов для определения длины символьных данных, поиска подстроки в текущей строке, преобразования символов из верхнего регистра в нижний и наоборот, и т.д. Далее мы рассмотрим этот класс более подробно.

Поле, индексатор и свойство класса String

В классе String определено единственное поле:

Public static readonly string Empty;

Поле Empty обозначает пустую строку, т.е. такую строку, которая не содержит символы. Этим оно отличается от пустой ссылки типа String, которая просто делается на несуществующий объект.

Помимо этого, в классе String определен единственный индексатор, доступный только для чтения:

Public char this { get; }

Этот индексатор позволяет получить символ по указанному индексу. Индексация строк, как и массивов, начинается с нуля. Объекты типа String отличаются постоянством и не изменяются, поэтому вполне логично, что в классе String поддерживается индексатор, доступный только для чтения.

И наконец, в классе String определено единственное свойство, доступное только для чтения:

Public int Length { get; }

Свойство Length возвращает количество символов в строке. В примере ниже показано использование индексатора и свойства Length:

Using System; class Example { static void Main() { string str = "Простая строка"; // Получить длину строки и 6й символ в строке используя индексатор Console.WriteLine("Длина строки - {0}, 6й символ - "{1}"", str.Length, str); } }

Операторы класса String

В классе String перегружаются два следующих оператора: == и!=. Оператор == служит для проверки двух символьных строк на равенство. Когда оператор == применяется к ссылкам на объекты, он обычно проверяет, делаются ли обе ссылки на один и тот же объект. А когда оператор == применяется к ссылкам на объекты типа String, то на предмет равенства сравнивается содержимое самих строк. Это же относится и к оператору!=. Когда он применяется к ссылкам на объекты типа String, то на предмет неравенства сравнивается содержимое самих строк. В то же время другие операторы отношения, в том числе =, сравнивают ссылки на объекты типа String таким же образом, как и на объекты других типов. А для того чтобы проверить, является ли одна строка больше другой, следует вызвать метод Compare(), определенный в классе String.

Как станет ясно дальше, во многих видах сравнения символьных строк используются сведения о культурной среде. Но это не относится к операторам == и!=. Ведь они просто сравнивают порядковые значения символов в строках. (Иными словами, они сравнивают двоичные значения символов, не видоизмененные нормами культурной среды, т.е. региональными стандартами.) Следовательно, эти операторы выполняют сравнение строк без учета регистра и настроек культурной среды.

Методы класса String

В следующей таблице перечислены некоторые наиболее интересные методы этого класса, сгруппированные по назначению:

Методы работы со строками
Метод Структура и перегруженные версии Назначение
Сравнение строк
Compare() public static int Compare(string strA, string strB)

Public static int Compare(string strA, string strB, bool ignoreCase)

Public static int Compare(string strA, string strB, StringComparison comparisonType)

Public static int Compare(string strA, string strB, bool ignoreCase, CultureInfo culture)

Статический метод, сравнивает строку strA со строкой strB. Возвращает положительное значение, если строка strA больше строки strB; отрицательное значение, если строка strA меньше строки strB; и нуль, если строки strA и strB равны. Сравнение выполняется с учетом регистра и культурной среды.

Если параметр ignoreCase принимает логическое значение true, то при сравнении не учитываются различия между прописным и строчным вариантами букв. В противном случае эти различия учитываются.

Параметр comparisonType определяет конкретный способ сравнения строк. Класс CultureInfo определен в пространстве имен System.Globalization.

public static int Compare(string strA, int indexA, string strB, int indexB, int length)

Public static int Compare(string strA, int indexA, string strB, int indexB, int length, bool ignoreCase)

Public static int Compare(string strA, int indexA, string strB, int indexB, int length, StringComparison comparisonType)

Public static int Compare(string strA, int indexA, string strB, int indexB, int length, bool ignoreCase, CultureInfo culture)

Сравнивает части строк strA и strB. Сравнение начинается со строковых элементов strA и strB и включает количество символов, определяемых параметром length. Метод возвращает положительное значение, если часть строки strA больше части строки strB; отрицательное значение, если часть строки strA меньше части строки strB; и нуль, если сравниваемые части строк strA и strB равны. Сравнение выполняется с учетом регистра и культурной среды.

CompareOrdinal() public static int CompareOrdinal(string strA, string strB)

Public static int CompareOrdinal(string strA, int indexA, string strB, int indexB, int count)

Делает то же, что и метод Compare(), но без учета локальных установок

CompareTo() public int CompareTo(object value)

Сравнивает вызывающую строку со строковым представлением объекта value. Возвращает положительное значение, если вызывающая строка больше строки value; отрицательное значение, если вызывающая строка меньше строки value; и нуль, если сравниваемые строки равны

public int CompareTo(string strB)

Сравнивает вызывающую строку со строкой strB

Equals() public override bool Equals(object obj)

Возвращает логическое значение true, если вызывающая строка содержит ту же последовательность символов, что и строковое представление объекта obj. Выполняется порядковое сравнение с учетом регистра, но без учета культурной среды

public bool Equals(string value)

Public bool Equals(string value, StringComparison comparisonType)

Возвращает логическое значение true, если вызывающая строка содержит ту же последовательность символов, что и строка value. Выполняется порядковое сравнение с учетом регистра, но без учета культурной среды. Параметр comparisonType определяет конкретный способ сравнения строк

public static bool Equals(string a, string b)

Public static bool Equals(string a, string b, StringComparison comparisonType)

Возвращает логическое значение true, если строка a содержит ту же последовательность символов, что и строка b . Выполняется порядковое сравнение с учетом регистра, но без учета культурной среды. Параметр comparisonType определяет конкретный способ сравнения строк

Конкатенация (соединение) строк
Concat() public static string Concat(string str0, string str1);

public static string Concat(params string values);

Комбинирует отдельные экземпляры строк в одну строку (конкатенация)
Поиск в строке
Contains() public bool Contains(string value) Метод, который позволяет определить, содержится ли в строке определенная подстрока (value)
StartsWith() public bool StartsWith(string value)

Public bool StartsWith(string value, StringComparison comparisonType)

Возвращает логическое значение true, если вызывающая строка начинается с подстроки value. В противном случае возвращается логическое значение false. Параметр comparisonType определяет конкретный способ выполнения поиска

EndsWith() public bool EndsWith(string value)

Public bool EndsWith(string value, StringComparison comparisonType)

Возвращает логическое значение true, если вызывающая строка оканчивается подстрокой value. В противном случае возвращает логическое значение false. Параметр comparisonType определяет конкретный способ поиска

IndexOf() public int IndexOf(char value)

Public int IndexOf(string value)

Находит первое вхождение заданной подстроки или символа в строке. Если искомый символ или подстрока не обнаружены, то возвращается значение -1

public int IndexOf(char value, int startIndex)

Public int IndexOf(string value, int startIndex)

Public int IndexOf(char value, int startIndex, int count)

Public int IndexOf(string value, int startIndex, int count)

Возвращает индекс первого вхождения символа или подстроки value в вызывающей строке. Поиск начинается с элемента, указываемого по индексу startIndex, и охватывает число элементов, определяемых параметром count (если указан). Метод возвращает значение -1, если искомый символ или подстрока не обнаружен

LastIndexOf() Перегруженные версии аналогичны методу IndexOf()

То же, что IndexOf, но находит последнее вхождение символа или подстроки, а не первое

IndexOfAny() public int IndexOfAny(char anyOf)

Public int IndexOfAny(char anyOf, int startIndex)

Public int IndexOfAny(char anyOf, int startIndex, int count)

Возвращает индекс первого вхождения любого символа из массива anyOf, обнаруженного в вызывающей строке. Поиск начинается с элемента, указываемого по индексу startIndex, и охватывает число элементов, определяемых параметром count (если они указаны). Метод возвращает значение -1, если не обнаружено совпадение ни с одним из символов из массива anyOf. Поиск осуществляется порядковым способом

LastIndexOfAny Перегруженные версии аналогичны методу IndexOfAny()

Возвращает индекс последнего вхождения любого символа из массива anyOf, обнаруженного в вызывающей строке

Разделение и соединение строк
Split public string Split(params char separator)

Public string Split(params char separator, int count)

Метод, возвращающий массив string с присутствующими в данном экземпляре подстроками внутри, которые отделяются друг от друга элементами из указанного массива char или string.

В первой форме метода Split() вызывающая строка разделяется на составные части. В итоге возвращается массив, содержащий подстроки, полученные из вызывающей строки. Символы, ограничивающие эти подстроки, передаются в массиве separator. Если массив separator пуст или ссылается на пустую строку, то в качестве разделителя подстрок используется пробел. А во второй форме данного метода возвращается количество подстрок, определяемых параметром count.

public string Split(params char separator, StringSplitOptions options)

Public string Split(string separator, StringSplitOptions options)

Public string Split(params char separator, int count, StringSplitOptions options)

Public string Split(string separator, int count, StringSplitOptions options)

В двух первых формах метода Split() вызывающая строка разделяется на части и возвращается массив, содержащий подстроки, полученные из вызывающей строки. Символы, разделяющие эти подстроки, передаются в массиве separator. Если массив separator пуст, то в качестве разделителя используется пробел. А в третьей и четвертой формах данного метода возвращается количество строк, ограничиваемое параметром count.

Но во всех формах параметр options обозначает конкретный способ обработки пустых строк, которые образуются в том случае, если два разделителя оказываются рядом. В перечислении StringSplitOptions определяются только два значения: None и RemoveEmptyEntries . Если параметр options принимает значение None, то пустые строки включаются в конечный результат разделения исходной строки. А если параметр options принимает значение RemoveEmptyEntries, то пустые строки исключаются из конечного результата разделения исходной строки.

Join() public static string Join(string separator, string value)

Public static string Join(string separator, string value, int startIndex, int count)

Строит новую строку, комбинируя содержимое массива строк.

В первой форме метода Join() возвращается строка, состоящая из сцепляемых подстрок, передаваемых в массиве value. Во второй форме также возвращается строка, состоящая из подстрок, передаваемых в массиве value, но они сцепляются в определенном количестве count, начиная с элемента массива value. В обеих формах каждая последующая строка отделяется от предыдущей разделительной строкой, определяемой параметром separator.

Заполнение и обрезка строк
Trim() public string Trim()

Public string Trim(params char trimChars)

Метод, который позволяет удалять все вхождения определенного набора символов с начала и конца текущей строки.

В первой форме метода Trim() из вызывающей строки удаляются начальные и конечные пробелы. А во второй форме этого метода удаляются начальные и конечные вхождения в вызывающей строке символов из массива trimChars. В обеих формах возвращается получающаяся в итоге строка.

PadLeft() public string PadLeft(int totalWidth)

Public string PadLeft(int totalWidth, char paddingChar)

Позволяет дополнить строку символами слева.

В первой форме метода PadLeft() вводятся пробелы с левой стороны вызывающей строки, чтобы ее общая длина стала равной значению параметра totalWidth. А во второй форме данного метода символы, обозначаемые параметром paddingChar, вводятся с левой стороны вызывающей строки, чтобы ее общая длина стала равной значению параметра totalWidth. В обеих формах возвращается получающаяся в итоге строка. Если значение параметра totalWidth меньше длины вызывающей строки, то возвращается копия неизмененной вызывающей строки.

PadRight() Аналогично PadLeft()

Позволяет дополнить строку символами справа.

Вставка, удаление и замена строк
Insert() public string Insert(int startIndex, string value)

Используется для вставки одной строки в другую, где value обозначает строку, вставляемую в вызывающую строку по индексу startIndex. Метод возвращает получившуюся в итоге строку.

Remove() public string Remove(int startIndex)

Public string Remove(int startIndex, int count)

Используется для удаления части строки. В первой форме метода Remove() удаление выполняется, начиная с места, указываемого по индексу startIndex, и продолжается до конца строки. А во второй форме данного метода из строки удаляется количество символов, определяемое параметром count, начиная с места, указываемого по индексу startIndex.

Replace() public string Replace(char oldChar, char newChar)

Public string Replace(string oldValue, string newValue)

Используется для замены части строки. В первой форме метода Replace() все вхождения символа oldChar в вызывающей строке заменяются символом newChar. А во второй форме данного метода все вхождения строки oldValue в вызывающей строке заменяются строкой newValue.

Смена регистра
ToUpper() public string ToUpper()

Делает заглавными все буквы в вызывающей строке.

ToLower() public string ToLower()

Делает строчными все буквы в вызывающей строке.

Получение подстроки из строки
Substring() public string Substring(int startIndex)

Public string Substring(int startIndex, int length)

В первой форме метода Substring() подстрока извлекается, начиная с места, обозначаемого параметром startIndex, и до конца вызывающей строки. А во второй форме данного метода извлекается подстрока, состоящая из количества символов, определяемых параметром length, начиная с места, обозначаемого параметром startIndex.

Пример следующей программы использует несколько из вышеуказанных методов:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { // Сравним первые две строки string s1 = "это строка"; string s2 = "это текст, а это строка"; if (String.CompareOrdinal(s1, s2) != 0) Console.WriteLine("Строки s1 и s2 не равны"); if (String.Compare(s1, 0, s2, 13, 10, true) == 0) Console.WriteLine("При этом в них есть одинаковый текст"); // Конкатенация строк Console.WriteLine(String.Concat("\n" + "Один, два ","три, четыре")); // Поиск в строке // Первое вхождение подстроки if (s2.IndexOf("это") != -1) Console.WriteLine("Слово \"это\" найдено в строке, оно "+ "находится на: {0} позиции", s2.IndexOf("это")); // Последнее вхождение подстроки if (s2.LastIndexOf("это") != -1) Console.WriteLine("Последнее вхождение слова \"это\" находится " + "на {0} позиции", s2.LastIndexOf("это")); // Поиск из массива символов char myCh = {"Ы","х","т"}; if (s2.IndexOfAny(myCh) != -1) Console.WriteLine("Один из символов из массива ch "+ "найден в текущей строке на позиции {0}", s2.IndexOfAny(myCh)); // Определяем начинается ли строка с заданной подстроки if (s2.StartsWith("это текст") == true) Console.WriteLine("Подстрока найдена!"); // Определяем содержится ли в строке подстрока // на примере определения ОС пользователя string myOS = Environment.OSVersion.ToString(); if (myOS.Contains("NT 5.1")) Console.WriteLine("Ваша операционная система Windows XP"); else if (myOS.Contains("NT 6.1")) Console.WriteLine("Ваша операционная система Windows 7"); Console.ReadLine(); } } }

Немного о сравнении строк в C#

Вероятно, из всех операций обработки символьных строк чаще всего выполняется сравнение одной строки с другой. Прежде чем рассматривать какие-либо методы сравнения строк, следует подчеркнуть следующее: сравнение строк может быть выполнено в среде.NET Framework двумя основными способами:

    Во-первых, сравнение может отражать обычаи и нормы отдельной культурной среды, которые зачастую представляют собой настройки культурной среды, вступающие в силу при выполнении программы. Это стандартное поведение некоторых, хотя и не всех методов сравнения.

    И во-вторых, сравнение может быть выполнено независимо от настроек культурной среды только по порядковым значениям символов, составляющих строку. Вообще говоря, при сравнении строк без учета культурной среды используется лексикографический порядок (и лингвистические особенности), чтобы определить, является ли одна строка больше, меньше или равной другой строке. При порядковом сравнении строки просто упорядочиваются на основании невидоизмененного значения каждого символа.

В силу отличий способов сравнения строк с учетом культурной среды и порядкового сравнения, а также последствий каждого такого сравнения настоятельно рекомендуется руководствоваться лучшими методиками, предлагаемыми в настоящее время корпорацией Microsoft. Ведь выбор неверного способа сравнения строк может привести к неправильной работе программы, когда она эксплуатируется в среде, отличающей от той, в которой она разработана.

Выбор способа сравнения символьных строк представляет собой весьма ответственное решение. Как правило и без всяких исключений, следует выбирать сравнение строк с учетом культурной среды, если это делается для целей отображения результата пользователю (например, для вывода на экран ряда строк, отсортированных в лексикографическом порядке). Но если строки содержат фиксированную информацию, не предназначенную для видоизменения с учетом отличий в культурных средах, например, имя файла, ключевое слово, адрес веб-сайта или значение, связанное с обеспечением безопасности, то следует выбрать порядковое сравнение строк. Разумеется, особенности конкретного разрабатываемого приложения будут диктовать выбор подходящего способа сравнения символьных строк.

В классе String предоставляются самые разные методы сравнения строк, которые перечислены в таблице выше. Наиболее универсальным среди них является метод Compare(). Он позволяет сравнивать две строки полностью или частично, с учетом или без учета регистра, способа сравнения, определяемого параметром типа StringComparison , а также сведений о культурной среде, предоставляемых с помощью параметра типа CultureInfo .

Те перегружаемые варианты метода Compare(), которые не содержат параметр типа StringComparison, выполняют сравнение символьных строк с учетом регистра и культурной среды. А в тех перегружаемых его вариантах, которые не содержат параметр типа CultureInfo, сведения о культурной среде определяются текущей средой выполнения.

Тип StringComparison представляет собой перечисление, в котором определяются значения, приведенные в таблице ниже. Используя эти значения, можно организовать сравнение строк, удовлетворяющее потребностям конкретного приложения. Следовательно, добавление параметра типа StringComparison расширяет возможности метода Compare() и других методов сравнения, например, Equals(). Это дает также возможность однозначно указывать способ предполагаемого сравнения строк.

В силу имеющих отличий между сравнением строк с учетом культурной среды и порядковым сравнением очень важно быть предельно точным в этом отношении.

Значения, определяемые в перечислении StringComparison
Значение Описание
CurrentCulture Сравнение строк производится с использованием текущих настроек параметров культурной среды
CurrentCultureIgnoreCase Сравнение строк производится с использованием текущих настроек параметров культурной среды, но без учета регистра
InvariantCulture Сравнение строк производится с использованием неизменяемых, т.е. универсальных данных о культурной среде
InvariantCultureIgnoreCase Сравнение строк производится с использованием неизменяемых, т.е. универсальных данных о культурной среде и без учета регистра
Ordinal Сравнение строк производится с использованием порядковых значений символов в строке. При этом лексикографический порядок может нарушиться, а условные обозначения, принятые в отдельной культурной среде, игнорируются
OrdinalIgnoreCase Сравнение строк производится с использованием порядковых значений символов в строке, но без учета регистра

В любом случае метод Compare() возвращает отрицательное значение, если первая сравниваемая строка оказывается меньше второй; положительное значение, если первая сравниваемая строка больше второй; и наконец, нуль, если обе сравниваемые строки равны. Несмотря на то что метод Compare() возвращает нуль, если сравниваемые строки равны, для определения равенства символьных строк, как правило, лучше пользоваться методом Equals() или же оператором ==.

Дело в том, что метод Compare() определяет равенство сравниваемых строк на основании порядка их сортировки. Так, если выполняется сравнение строк с учетом культурной среды, то обе строки могут оказаться одинаковыми по порядку их сортировки, но не равными по существу. По умолчанию равенство строк определяется в методе Equals(), исходя из порядковых значений символов и без учета культурной среды. Следовательно, по умолчанию обе строки сравниваются в этом методе на абсолютное, посимвольное равенство подобно тому, как это делается в операторе ==.

Несмотря на большую универсальность метода Compare(), для простого порядкового сравнения символьных строк проще пользоваться методом CompareOrdinal(). И наконец, следует иметь в виду, что метод CompareTo() выполняет сравнение строк только с учетом культурной среды.

В приведенной ниже программе демонстрируется применение методов Compare(), Equals(), CompareOrdinal(), а также операторов == и!= для сравнения символьных строк. Обратите внимание на то, что два первых примера сравнения наглядно демонстрируют отличия между сравнением строк с учетом культурной среды и порядковым сравнением в англоязычной среде:

Using System; class Example { static void Main() { string str1 = "alpha"; string str2 = "Alpha"; string str3 = "Beta"; string str4 = "alpha"; string str5 = "alpha, beta"; int result; // Сначала продемонстрировать отличия между сравнением строк // с учетом культурной среды и порядковым сравнением result = String.Compare(str1, str2, StringComparison.CurrentCulture); Console.Write("Сравнение строк с учетом культурной среды: "); if (result 0) Console.WriteLine(str1 + " больше " + str2); else Console.WriteLine(str1 + " равно " + str2); result = String.Compare(str1, str2, StringComparison.Ordinal); Console.Write("Порядковое сравнение строк: "); if (result 0) Console.WriteLine(str1 + " больше " + str2); else Console.WriteLine(str1 + " равно " + str4); // Использовать метод CompareOrdinal() result = String.CompareOrdinal(str1, str2); Console.Write("Сравнение строк методом CompareOrdinal():\n"); if (result 0) Console.WriteLine(str1 + " больше " + str2); else Console.WriteLine(str1 + " равно " + str4); Console.WriteLine(); // Определить равенство строк с помощью оператора == // Это порядковое сравнение символьных строк if (str1 == str4) Console.WriteLine(str1 + " == " + str4); // Определить неравенство строк с помощью оператора!= if(str1 != str3) Console.WriteLine(str1 + " != " + str3); if(str1 != str2) Console.WriteLine(str1 + " != " + str2); Console.WriteLine(); // Выполнить порядковое сравнение строк без учета регистра, // используя метод Equals() if(String.Equals(str1, str2, StringComparison.OrdinalIgnoreCase)) Console.WriteLine("Сравнение строк методом Equals() с " + "параметром OrdinalIgnoreCase:\n" + str1 + " равно " + str2); Console.WriteLine (); // Сравнить части строк if(String.Compare(str2, 0, str5, 0, 3, StringComparison.CurrentCulture) > 0) { Console.WriteLine("Сравнение строк с учетом текущей культурной среды:" + "\n3 первых символа строки " + str2 + " больше, чем 3 первых символа строки " + str5); } } }

Выполнение этой программы приводит к следующему результату:

В современном стандарте C++ определен класс с функциями и свойствами (переменными) для организации работы со строками (в классическом языке C строк как таковых нет, есть лишь массивы символов char):

#include

#include

#include

Для работы со строками также нужно подключить стандартный namespace:

Using namespace std;

В противном случае придётся везде указывать описатель класса std::string вместо string .

Ниже приводится пример программы, работающей со string (в старых си-совместимых компиляторах не работает!):

#include #include #include using namespace std; int main () { string s = "Test"; s.insert (1,"!"); cout << s.c_str() << endl; string *s2 = new string("Hello"); s2->erase(s2->end()); cout << s2->c_str(); cin.get(); return 0; }

Основные возможности, которыми обладает класс string:

  • инициализация массивом символов (строкой встроенного типа) или другим объектом типа string . Встроенный тип не обладает второй возможностью;
  • копирование одной строки в другую. Для встроенного типа приходится использовать функцию strcpy() ;
  • доступ к отдельным символам строки для чтения и записи. Во встроенном массиве для этого применяется операция взятия индекса или косвенная адресация с помощью указателя;
  • сравнение двух строк на равенство. Для встроенного типа используются функции семейства strcmp() ;
  • конкатенация (сцепление) двух строк, дающая результат либо как третью строку, либо вместо одной из исходных. Для встроенного типа применяется функция strcat() , однако чтобы получить результат в новой строке, необходимо последовательно задействовать функции strcpy() и strcat() , а также позаботиться о выделении памяти;
  • встроенные средства определения длины строки (функции-члены класса size() и l ength()). Узнать длину строки встроенного типа можно только вычислением с помощью функции strlen() ;
  • возможность узнать, пуста ли строка.

Рассмотрим эти базовые возможности более подробно.

Инициализация строк при описании и длина строки (не включая завершающий нуль-терминатор):

String st("Моя строка\n"); cout << "Длина " << st << ": " << st.size() << " символов, включая символ новой строки\n";

Строка может быть задана и пустой:

String st2;

Для проверки того, пуста ли строка , можно сравнить ее длину с 0:

If (! st.size()) // пустая

или применить метод empty() , возвращающий true для пустой строки и false для непустой:

If (st.empty()) // пустая

Третья форма создания строки инициализирует объект типа string другим объектом того же типа:

String st3(st);

Строка st3 инициализируется строкой st . Как мы можем убедиться, что эти строки совпадают ? Воспользуемся оператором сравнения (==):

If (st == st3) // инициализация сработала

Как скопировать одну строку в другую ? С помощью обычной операции присваивания:

St2 = st3; // копируем st3 в st2

Для сцепления строк используется операция сложения (+) или операция сложения с присваиванием (+=). Пусть даны две строки:

String s1("hello, "); string s2("world\n");

Мы можем получить третью строку, состоящую из конкатенации первых двух, таким образом:

String s3 = s1 + s2;

Если же мы хотим добавить s2 в конец s1 , мы должны написать:

S1 += s2;

Операция сложения может сцеплять объекты класса string не только между собой, но и со строками встроенного типа. Можно переписать пример, приведенный выше, так, чтобы специальные символы и знаки препинания представлялись встроенным типом char * , а значимые слова – объектами класса string:

Const char *pc = ", "; string s1("hello"); string s2("world"); string s3 = s1 + pc + s2 + "\n"; cout << endl << s3;

Подобные выражения работают потому, что компилятор "знает", как автоматически преобразовывать объекты встроенного типа в объекты класса string . Возможно и простое присваивание встроенной строки объекту string:

String s1; const char *pc = "a character array"; s1 = pc; // правильно

Обратное преобразование при этом не работает . Попытка выполнить следующую инициализацию строки встроенного типа вызовет ошибку компиляции:

Char *str = s1; // ошибка компиляции

Чтобы осуществить такое преобразование, необходимо явно вызвать функцию-член с названием c_str() ("строка Си"):

Const char *str = s1.c_str();

Функция c_str() возвращает указатель на символьный массив, содержащий строку объекта string в том виде, в каком она находилась бы во встроенном строковом типе. Ключевое слово const здесь предотвращает "опасную" в современных визуальных средах возможность непосредственной модификации содержимого объекта через указатель.

К отдельным символам объекта типа string , как и встроенного типа, можно обращаться с помощью операции взятия индекса. Вот, например, фрагмент кода, заменяющего все точки символами подчеркивания:

String str("www.disney.com"); int size = str.size(); for (int i = 0; i < size; i++) if (str[i] == ".") str[ i ] = "_"; cout << str;

Replace(str.begin(), str.end(), ".", "_");

Правда, здесь использован не метод replace класса string , а одноимённый алгоритм:

#include

Поскольку объект string ведет себя как контейнер, к нему могут применяться и другие алгоритмы. Это позволяет решать задачи, не решаемые напрямую функциями класса string .

Ниже приводится краткое описание основных операторов и функций класса string , ссылки в таблице ведут к русскоязычным описаниям в интернете. Более полный список возможностей класса string можно получить, например, в Википедии или на сайте cplusplus.com .

Задание символов в строке

operator=

присваивает значения строке

assign

назначает символы строке

Доступ к отдельным символам

at

получение указанного символа с проверкой выхода индекса за границы

operator

получение указанного символа

front

получение первого символа

back

получение последнего символа

data

возвращает указатель на первый символ строки

c_str

возвращает немодифицируемый массив символов С , содержащий символы строки

Проверка на вместимость строки

empty

проверяет, является ли строка пустой

size
length

возвращает количество символов в строке

max_size

возвращает максимальное количество символов

reserve

резервирует место под хранение

Операции над строкой

clear

очищает содержимое строки

insert

вставка символов

erase

удаление символов

push_back

добавление символа в конец строки

pop_back

удаляет последний символ

append

operator+=

добавляет символы в конец строки

compare

сравнивает две строки

replace

заменяет каждое вхождение указанного символа

substr

возвращает подстроку

copy

копирует символы

resize

изменяет количество хранимых символов