Начало новой эпохи. Как работает оперативная память стандарта DDR4. Спецификация оперативной памяти DDR4 Ddr4 описание

Небольшое экспресс-тестирование работы процессоров под LGA1151 с памятью, типа DDR3 и DDR4 мы проводили еще в прошлом году, а в этом немного расширили изученную область в направлении бюджетных моделей для этой платформы. В общем и целом сложилось ощущение, что преимуществ по производительности у нового типа памяти нет, зато она позволяет сэкономить немного энергии, что в последние годы стало основной точкой приложения усилий Intel при разработке новых микроархитектур. Правда, влияние памяти на энергопотребление старших моделей процессоров Intel мы не исследовали. Да и вообще - их тесты проводились еще с использованием старой методики тестирования, причем очень разных системных плат и т. п., так что сделанные в прошлом году выводы могут и устареть. Поэтому мы решили исследовать вопрос более тщательно и подробно.

Конфигурация тестовых стендов

Процессор Intel Celeron G3900 Intel Pentium G4500T Intel Core i3-6100 Intel Core i5-6400 Intel Core i7-6700K
Название ядра Skylake Skylake Skylake Skylake Skylake
Технология пр-ва 14 нм 14 нм 14 нм 14 нм 14 нм
Частота ядра std/max, ГГц 2,8 3,0 3,7 2,7/3,3 4,0/4,2
Кол-во ядер/потоков 2/2 2/2 2/4 4/4 4/8
Кэш L1 (сумм.), I/D, КБ 64/64 64/64 64/64 128/128 128/128
Кэш L2, КБ 2×256 2×256 2×256 4×256 4×256
Кэш L3 (L4), МиБ 2 3 3 6 8
Оперативная память 2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
TDP, Вт 51 35 51 65 91
Графика HDG 510 HDG 530 HDG 530 HDG 530 HDG 530
Кол-во EU 12 23 23 24 24
Частота std/max, МГц 350/950 350/950 350/1050 350/950 350/1150
Цена T-13475848 T-12874617 T-12874330 T-12873939 T-12794508

Мы воспользовались пятью процессорами, причем два из них уже были протестированы ранее - именно поэтому сегодня будут использоваться результаты Pentium G4500T, а не несколько более актуальных для розничных покупателей G4500/G4520: обычная экономия временны́х затрат. Все равно в наибольшей степени нас интересуют не они, а процессоры чуть более высокого класса - например, младшие в линейках Core i3-6100 и i5-6400. Почему именно младшие? Как нам кажется, именно у покупателей таковых наиболее вероятно желание сэкономить при модернизации системы, не меняя шило на мыло DDR3 на DDR4. Да и при покупке новой системы то, что на данный момент бюджетные платы с поддержкой DDR3 стоят немного дешевле аналогов со слотами DDR4, важнее всего именно тем, кто собирает бюджетный компьютер. А если уж сможет себе позволить какой-нибудь Core i3-6320, то лучше «дотянет» до «настоящего четырехъядерного» Core i5-6400. Но, тем не менее, не протестировать совместно с DDR3 топовый Core i7-6700K мы тоже не могли - все-таки это самое быстрое (и самое прожорливое) предложение Intel для данной платформы, поэтому и крайне необходимое для оценки максимального потенциального эффекта от перехода на новый стандарт памяти.

Что касается собственно модулей памяти, то в обоих случаях мы использовали пару таковых, суммарной емкостью 8 ГБ. Частота соответствовала поддерживаемой по стандарту - 1600 МГц для DDR3 и 2133 МГц для DDR4. В принципе, некоторые производители системных плат предлагают возможности разгона памяти и для DDR3, но тут есть один деликатный момент - для достижения высоких частот обычно используется повышенное до 1,65 В (вместо стандартных 1,5 В) напряжение питания. При этом Intel не рекомендует так поступать еще со времен LGA1156, предупреждая, что повышенное напряжение может привести и к повреждению процессора. А ведь официально устройствам для LGA1151 разрешено работать даже не с DDR3, а с DDR3L, работающей на напряжении 1,35 В, т. е. для них эта проблема может оказаться и более выраженной. Впрочем, справедливости ради, за прошедшие семь лет мы ни разу не сталкивались с выходом процессоров из строя, даже при использовании «оверклокерских» модулей. Более того - и не слышали о ситуациях, в которых можно было однозначно заявить о наличии таких проблем. Но береженого известно кто бережет:) Тем более, под концепцию минимизации цены системы разнообразные «хай-енд»-модули с декоративными радиаторами и прочими светодиодами все равно никак не подходят, поскольку и стоят уже дороже массовой DDR4. А вот банальная DDR3-1600 все еще может оказаться полезной.

Системных плат потребовалось две. В идеале, конечно, такое тестирование стоило проводить на универсальной модели, тройка каковых уже есть в ассортименте ASRock, но к нам в руки они пока не попадали. Поэтому мы просто взяли две платы, максимально-сходные по конструкции и даже назначению: ASRock Fatal1ty B150 Gaming K4 и Asus B150 Pro Gaming D3 . И основанные на одном и том же чипсете, что тоже может оказаться немаловажным, равно как и сходная (десятиканальная) схема питания процессора.

Методика тестирования

Методика подробно описана в отдельной статье . Здесь же вкратце напомним, что базируется она на следующих четырех китах:

  • Методика измерения энергопотребления при тестировании процессоров
  • Методика мониторинга мощности, температуры и загрузки процессора в процессе тестирования

А подробные результаты всех тестов доступны в виде полной таблицы с результатами (в формате Microsoft Excel 97-2003) . Непосредственно же в статьях мы используем уже обработанные данные. В особенности, это относится к тестам приложений, где все нормируется относительно референсной системы (как и в прошлом году, ноутбука на базе Core i5-3317U с 4 ГБ памяти и SSD, емкостью 128 ГБ) и группируется по сферам применения компьютера.

iXBT Application Benchmark 2016

Первая же группа программ преподнесла сюрприз - на трех процессорах из пяти DDR3 оказалась быстрее, чем DDR4. Изучение подробных результатов показывает, что «благодарить» за это нужно одну программу, а именно Adobe After Effects CC 2015. Предыдущая ее версия, помнится, испортила нам немало крови из-за своих требований к емкости памяти (причем зависящих от прочего аппаратного окружения), теперь вот новая напасть - и связанная именно с памятью. На медленных процессорах, впрочем, незаметная - там доверительные интервалы разных измерений существенно пересекаются. Но вот при возможности использовать четыре или более потоков вычисления, на погрешность разницу уже не спишешь: на Core i3-6100 и i5-6400 она превышает 10%. А для i7-6700K - немного уменьшается: судя по всему, благодаря большей емкости кэш-памяти. В общем, «прогресс» иногда может оказаться и таким. Локально - остальные программы группы работают на системе с DDR4 либо также, либо немного быстрее, что и приводит в конечном итоге к почти равным результатам. Для разных типов памяти, но не процессоров, разумеется, т. е. перед нами как раз тот случай, когда экономия посредством сохранения старой памяти может позволить приобрести более быстрый процессор, что окупится сторицей.

В данном случае, напротив, имеем некоторый прирост результатов при использовании DDR4, причем, чем быстрее процессор, тем он выше. Но даже в крайнем случае не превышает 3%, т. е. бежать менять память только лишь из-за производительности не стоит.

Формально - новая память лучше, фактически же разница в доли процента интересна может оказаться только любителям бенчмарков, но не для практического использования.

Аналогичный случай. Нет, конечно, результаты стабильно выше. Но такой прирост производительности без фотофиниша не зафиксируешь, так что лучше просто не обращать на него внимания.

Опять отличия в пределах 1%. Даже там, где они вообще есть. Покупателям же систем начального уровня тем более имеет смысл не волноваться, а попробовать сэкономить. Даже при покупке нового компьютера об этом можно пока поразмыслить, не говоря уже о том случае, когда достаточный объем DDR3 остался от старого.

При упаковке данных Core i7-6700K все-таки сумел героически «выжать» целых 2% разницы за счет большей ПСП. Остальным же более чем достаточно и DDR3-1600, а DDR4 может даже помешать из-за пока еще больших задержек.

Файловые операции последние лет пять умеют активно «нагружать» память, однако мы не склонны в данном случае относить эффект на счет ее производительности. Скорее, прочие сторонние факторы, типа работы контроллера в том режиме, на который он в основном и рассчитан.

Глядя на результаты младших процессоров Intel, мы посчитали, что этой программе вообще противопоказаны более высокие задержки DDR4. Однако воспользовавшись более быстрыми моделями можно увидеть, что, по мере роста их производительности, требования к пропускной способности памяти тоже растут. В итоге удается «выжать» до 3-4%. Что, впрочем, неплохо смотрится только на фоне остальных групп приложений, но слишком мало для практической значимости.

В конечном итоге приходим к практически полной эквивалентности двух типов памяти, поскольку разница между ними находится в пределах погрешности. Впрочем, как мы видели выше, есть программы, которые «жестко голосуют» за один из вариантов, но настолько странным образом, что это вообще можно списать на какие-то ошибки (или, что то же самое, неумеренную и ненужную оптимизацию), которые со временем будут исправлены. А вот такого, чтоб результаты взяли и выросли на треть (пропорционально эффективной частоте) - и близко нет.

Энергопотребление и энергоэффективность

Чтобы не перебарщивать с размерами диаграмм, мы решили ограничиться тремя точками - крайними и средней (результаты остальных двух систем желающие могут посмотреть в сводном файле). В принципе, они хорошо демонстрируют - зачем все это затевалось. А также и то, что для младших конфигураций эффектом можно, в принципе, и пренебречь: какая-то экономия наблюдается и в случае Celeron G3900, но с учетом его очень малого «аппетита» вообще... Плюс-минус пять ватт в настольной системе проблем не составят. Вот 10-15 при использовании топовых процессоров - уже что-то, однако в относительном исчислении тоже не стоит внимания.

Но, разумеется, большому любителю «зеленых» может и принести небольшое моральное удовлетворение. Как и в целом LGA1151 - согласно тестам, даже при использовании DDR3 это все равно самая «энергоэффективная» на сегодня настольная платформа, причем не уступающая даже суррогатным системам, но при несравнимо более высокой производительности. Впрочем, и LGA1150 в этом качестве была неплоха, да и «старенькая» уже LGA1155 при продлении ей жизни и отсутствии новых разработок выглядела бы неплохо. Фактически среди настольных платформ конкуренции в плане энергоэффективности давно уже не наблюдается. Так что «усиление и углубление» работы в данном направлении - отголоски событий на совсем других рынках.

Однако нераскрытым пока еще остается другой вопрос, а именно влияние разных типов памяти на энергопотребление самого процессора. «Платформенная» экономичность - понятно: все-таки и сами модули памяти имеют разное энергопотребление. А сказывается ли это непосредственно на работу контроллера, интегрированного в процессор? Заранее и не скажешь. К примеру, дискретная видеокарта тоже «портит» показатели энергоэффективности, но непосредственно на процессоре не сказывается никак. Значит, надо измерять. Тем более, для новых платформ это проблем не составляет - еще со времен LGA1150 компания «перевела» систему питания процессора непосредственно на выделенную линию БП целиком и полностью.

Эффект, как видим, есть - более скромный, чем для «платформы», но лояльным к памяти старого типа его не назовешь. Опять же - для младших моделей в ассортименте Intel им можно и пренебречь, а вот для старших можно получить и лишний десяток ватт «под крышкой». И это даже для стандартных модулей DDR3 с напряжением питания 1,5 В - увеличение последнего (при попытках повысить частоту памяти), разумеется, положение дел только усугубит. Таким образом, рекомендации «не задирать» напряжение питания модулей памяти можно верить - ничего хорошего это не принесет. Плохого, вполне возможно, что тоже. Но рисковать или нет - каждый пусть решает для себя сам. Во всяком случае, влияние использования памяти типа DDR3 на собственное энергопотребление (и, соответственно, тепловыделение) центрального процессора - задокументированный факт. Равно как и небольшой размер этого «влияния» в случае процессоров бюджетного сегмента. Или даже моделей среднего уровня.

iXBT Game Benchmark 2016

Чтобы не перегружать статью большим количеством в общем-то однотипных диаграмм, мы в очередной раз решили обойтись интегральным баллом (напомним: он отражает не абсолютные показатели, а способность систем как-то «вытягивать» хотя бы 30 кадров в секунду в разных играх).

Собственно, все очевидно. Разумеется, большая ПСП благотворно сказывается на интегрированном GPU, но принципиально положение дел измениться не может. Кое-где это позволяет, например, увеличить частоту кадров с 28 до 31, что сказывается на общем результате, однако никаких вау-эффектов не наблюдается. Это в очередной раз подтверждает, что при приобретении компьютера игрового назначения «танцевать» надо от видеокарты. Потом уже можно задуматься о процессоре, а все остальное - по вкусу. Если деньги останутся:) Но запросы современных (и даже уже не очень) игр таковы, что вряд ли останутся уже после первого шага. Так что если использование «старой» памяти позволит приобрести чуть более быструю видеокарту - этим в обязательном порядке стоит воспользоваться. А все попытки повысить производительность интегрированной графики без кардинальных ее изменений не стоят даже затраченного времени, не говоря уже о деньгах.

Итого

Итак, мы уточнили ранее полученные результаты и пришли к выводу, что пока эффект от перехода к DDR4 даже скромнее, чем казался ранее. Из чего, впрочем, не следует, что этому переходу надо как-то специально противодействовать. Во-первых, новая память позволяет сэкономить немного энергии. Причем (что тоже немаловажно) речь идет не только о большей экономичности всей системы, но и потребление процессора оказывается немного более низким, так что и работать последний будет в более щадящем режиме, и с охлаждением все проще решать. Во-вторых же, отгрузки DDR3 довольно быстро сокращаются, так что эта память дешеветь не будет наверняка, в отличие от DDR4. На которую все равно рано или поздно придется переходить, причем мы не удивимся, если поддержка DDR3 исчезнет со временем и из новых процессоров уже в рамках LGA1151. C другой стороны, если таковая память уже есть, причем в достаточном количестве, которое в ближайшем будущем увеличивать не планируется - момент перехода можно и отложить до более удачного в финансовом плане. Каких-то проблем это не составит, даже при покупке топового процессора, не говоря уже об устройствах среднего и нижнего уровня. Но, естественно, не стоит увлекаться чрезмерным повышением напряжения на модулях, поскольку определенное отрицательное значение для процессора это имеет.

Различия между поколениями оперативной памяти всегда достаточно существенны. Прошлогодний выход в люди стандарта DDR4 сделал серверный сегмент и high-performance desktop несколько выходящими из общего ряда. Недавний анонс серверным процессоров Intel Atom потянул за собой SO-DIMM DDR4. Все готово для массовой атаки на рынок, а не просто дебюта. Поизучаем немного теории, освежим знания? Под катом ключевые различия между DDR3 и DDR4.

Физические различия.

Разумеется, физически планки памяти DDR3 и DDR4 несовместимы. Вместо 240 пин у “третьего” - “четвертый” обладает 288 контактами. Увеличение числа контактов сделано ради возможности адресации как можно большего количества памяти. В самом максимальном варианте модуль памяти стандарта DDR4 может иметь объём 512 гигабайт. Минимальный объем модуля - 2 гигабайта.

Ключ разъема смещен ближе к центру. Защита от невнимательных пользователей работает, защита от невнимательных, но очень сильных пользователей - не существует.

Высота референсной планки - 31,25 мм - это чуть выше чем у предшественника (30 мм). Длина планки прежняя - 133,35 мм (напомните мне, сколько это в дюймах?), этот параметр не изменялся с момента появления первого поколения оперативной памяти DDR.

Электрические различия.

Вместо штатного напряжения питания 1,5В (1,35В для Haswell) предлагается стандартное напряжение 1,2В (1,05В для энергоэффективных систем). Преимущества очевидны: меньше нагрев, меньше энергопотребление, в дальнейшем: больше время автономной работы.

Частотные различия.

Если стандарты DDR3 начинаются с частоты 1066 МГц, то DDR4 стартует с отметки в 2133 МГц. Формально - увеличение частоты в два раза, а вот реально производительность не растет в два раза. Уже официально выпущены модули DDR4 с частотой 3000 МГц и есть даже более высокие показатели, но все они ориентированы на энтузиастов и оверклокеров.

Архитектурные различия.

Самое важное, что произошло при переходе - изменение архитектуры доступа к модулям. Раньше шина Multi-Drop имела всего два канала и даже при организации работы с четырьмя модулями памяти, они висели попарно на одном канале, что не всегда положительно сказывалось на производительности.

Новая шина с оригинальным название Point-to-Point будет связывать каждый канал с одним модулем памяти. То есть при наличии в процессоре двухканального контроллера памяти - будут доступны два слота, а при наличии четырехканального - четыре. Вы скажете мне, а как же платы с 8 слотами под память? Для них применяются цифровые коммутаторы - аналогичные по смыслу, тем, что разветвляют линии PCI Express. Таким образом, оперативная память переходит на использование параллельного доступа.

Еще один важный момент - изменение в организации чипов памяти. При равном объеме чип DDR4 будет иметь в два раза больше банков памяти и строки памяти в четыре раза короче. Это говорит о том, что новый стандарт будет переключаться между банками намного быстрее, чем DDR3.

Вкратце, это все ключевые различия между двумя поколениями оперативной памяти DDR3 и DDR4, как это отражается на практике? Есть ли ощутимые различия в производительности - будем выяснять в следующих постах. Оставайтесь с нами.

Наконец-то позволил сравнить между собой память стандартов DDR4 и DDR3 в равных условиях. Однако прежде чем перейти к результатам тестирования, предлагаем сначала более детально изучить различия между данными типами модулей. Это даст нам лучшее представление о том, чего стоит ожидать от новой памяти не только сейчас, но и в ближайшем будущем.

За разработку стандарта DDR4 ассоциация JEDEC взялась еще в 2005 году. В те времена в магазинах еще полных ходом продавались планки DDR2, и только планировался серийный выпуск модулей DDR3. Иными словами, инженеры уже тогда понимали, что возможности данных стандартов ограничены и рано или поздно они станут лимитировать либо вовсе не соответствовать уровню остальных комплектующих ПК.

Причем речь идет не только о пропускной способности памяти, но и о таких важных характеристиках, как энергопотребление модулей и их объем. Как можно убедиться из данной диаграммы, планки DDR4 обходят своих предшественников по всем параметрам.

Увеличение пропускной способности

Пропускная способность подсистемы памяти напрямую зависит от скорости работы модулей: чем она выше, тем быстрее осуществляется запись и чтение из памяти. Конечно, далеко не все приложения постоянно обмениваются большими массивами данных, поэтому в реальных условиях эксплуатации пользователь может и не ощутить преимущества от установки более производительных комплектов. Но если мы говорим о специализированных программах наподобие видео- и фоторедакторов, CAD-систем или средств для создания 3D-анимации, то результат от применения скоростных модулей уже окажется куда существеннее. Также высокая пропускная способность подсистемы памяти важна при использовании встроенной графики. Ведь у iGPU нет доступа к быстрым чипам GDDR5, поэтому вся необходимая ему информация помещается в оперативную память ПК. Соответственно, в данном случае установка более производительных комплектов памяти напрямую будет влиять на количество FPS на экране.

Для формата DDR3 стандартными являются частоты от 1066 МГц до 1600 МГц, и лишь недавно добавилось значение 1866 МГц. Для DDR4 же минимальная скорость работы начинается с отметки 2133 МГц. Да, вы скажете, что модули DDR3 могут наверстать разницу с помощью разгона. Но ведь то же самое доступно и для планок DDR4, у которых и разгонный потенциал выше. Ведь с помощью оптимизации параметров модули DDR3 обычно берут планку в 2400 - 2666 МГц, для DDR4 без проблем покоряются высоты в 2800 - 3000 МГц.

Если сравнивать стандарты DDR4 и DDR3 с точки зрения энтузиастов-оверклокеров, то и тут перевес будет на стороне DDR4. Уже сейчас достигнуто значение в 4838 МГц, а ведь прошел только один год после анонса нового формата. Напомним, рекордной частотой разгона для модулей DDR3 является 4620 МГц, которая была зафиксирована лишь через 7 лет после запуска стандарта DDR3 в производство. Одним словом, в плане скорости работы потенциал у памяти DDR4 очень большой.

Улучшение энергоэффективности

Вторым важным преимуществом модулей DDR4 является возможность функционирования на низких напряжениях. Так, для их корректной работы на номинальных частотах (2133 - 2400 МГц) достаточно всего лишь 1,2 В, что на 20% меньше, чем у их предшественников (1,5 В). Правда, со временем на рынок была выведена энергоэффективная память стандартов DDR3L и DDR3U с напряжением питания 1,35 и 1,25 В соответственно. Однако она стоит дороже и имеет ряд ограничений (как правило, ее частота не превышает 1600 МГц).

Также память DDR4 получила поддержку новых энергосберегающих технологий. Например, модуль DDR3 использует только одно напряжение Vddr, которое для выполнения некоторых операций повышается с помощью внутренних преобразователей. Тем самым генерируется лишнее тепло и уменьшается общая эффективность подсистемы памяти. Для планки стандарта DDR4 спецификация предусматривает возможность получения этого напряжения (Vpp, равное 2,5 В) от внешнего преобразователя питания.

Память DDR4 также получила усовершенствованный интерфейс ввода/вывода данных под названием «Pseudo-Open Drain» (POD). От используемого ранее Series-Stub Terminated Logic (SSTL) он отличается отсутствием утечки тока на уровне драйверов ячеек памяти.

В целом же использование всего комплекса энергоэффективных технологий должно привести к 30%-ому выигрышу в энергопотреблении. Возможно, в рамках настольного ПК это покажется несущественной экономией, но если речь идет о портативных устройствах (ноутбуки, нетбуки), то 30% - не такое уж и маленькое значение.

Модернизированная структура

В максимальной конфигурации чип DDR3 содержит 8 банков памяти, тогда как для DDR4 доступно уже 16 банков. При этом длина строки в структуре чипа DDR3 составляет 2048 байт, а в DDR4 - 512 байт. В результате новый тип памяти позволяет быстрее переключаться между банками и открывать произвольные строки.

Микроархитектура DDR4 предполагает использование 8-гигабитных чипов, в то время как модули стандарта DDR3, как правило, создаются на основе микросхем емкостью 4 Гбит. То есть при одинаковом количестве чипов мы получим в два раза больший объем. На сегодняшний день наиболее распространенными являются 4-гигабайтные модули (к слову, это минимальная емкость для планки памяти стандарта DDR4). Но в ряде зарубежных стран предлагаются уже и более емкие модули: на 8 и даже на 16 ГБ. Заметьте, что при этом мы говорим о массовом сегменте рынка.

Для решения же узкоспециализированных задач без проблем можно создавать модули еще большего объема. Для этих целей предусмотрены 16-гигабитные чипы и специальная технология для их компоновки в корпусе DRAM (Through-silicon Via). Например, компании Samsung и SK Hynix уже представили планки емкостью 64 и 128 ГБ. Теоретически же максимальный объем одного модуля DDR4 может составлять 512 ГБ. Хотя вряд ли мы когда-нибудь увидим практическую реализацию таких решений, поскольку их стоимость будет чрезвычайно большой.

Несмотря на увеличение всех основных характеристик, размеры планок памяти DDR4 и DDR3 остались сопоставимыми: 133,35 х 31,25 мм против 133,35 х 30,35 мм соответственно. В физическом плане изменилось лишь расположение ключа и количество контактов (с 240 их число увеличилось до 288). Так что даже при всем желании модуль DDR4 никак не удастся установить в слот для памяти DDR3 и наоборот.

Новый интерфейс связи с контроллером памяти

Стандарт DDR 3

Стандарт DDR4

Новый стандарт памяти предусматривает использование и более прогрессивной шины связи модулей с контроллером памяти. В стандарте DDR3 применяется интерфейс Multi-Drop Bus с двумя каналами. При использовании сразу четырех слотов получается, что два модуля подключены к одному каналу, что не самым лучшим образом сказывается на производительности подсистемы памяти.

В стандарте DDR4 усовершенствовали этот интерфейс, применив более эффективную схему − один модуль на один канал. Новый тип шины получил название Point-to-Point Bus. Параллельный доступ к слотам однозначно лучше последовательного, поскольку в дальнейшем позволяет более эффективно наращивать быстродействие всей подсистемы. Может быть сейчас особого преимущества пользователи и не ощутят, однако в дальнейшем, когда возрастут объемы передаваемой информации, оно станет более показательным. Ведь именно по такой же схеме развивалась видеопамять GDDR и интерфейс PCI Express. Только использование параллельного доступа позволило в значительной степени увеличить их производительность.

Однако шина Point-to-Point Bus накладывает некие ограничения на количество используемых модулей. Так, двухканальный контроллер может обслуживать только два слота, а четырехканальный − четыре. При увеличении объемов планок стандарта DDR4 это не столь критично, но все же на первых порах может вызвать определенные неудобства.

Решается эта проблема довольно простым способом − путем установки специального коммутатора (Digital Switch) между контроллером и слотами памяти. По принципу своего действия он напоминает коммутатор линий PCI Express. В результате пользователю, как и прежде, будет доступно 4 или 8 слотов (в зависимости от уровня платформы), при этом будут использоваться все преимущества шины Point-to-Point Bus.

Новые механизмы обнаружения и коррекции ошибок

Так как работа на высоких скоростях с большими стеками данных увеличивает шанс возникновения ошибок, то разработчики стандарта DDR4 позаботились о реализации механизмов для их обнаружения и предупреждения. В частности, в новых модулях имеется поддержка функции коррекции промахов, связанных с контролем четности команд и адресов, а также проверка контрольных сумм перед записью данных в память. На стороне же самого контроллера появилась возможность тестирования соединений без использования инициализирующих последовательностей.

Сравнение производительности памяти DDR4 и DDR3 в равных условиях

Для проведения тестов мы использовали такую конфигурацию стенда:

Процессор

Intel Core i7-6700K (Socket LGA1151) @ 4,0 ГГц

Материнские платы

ASUS MAXIMUS VIII GENE (DDR4)

ASUS Z170-P D3 (DDR3)

Комплекты оперативной памяти

DDR3L-1600 HyperX Fury HX316LC10FBK2/16

DDR3-2400 G.SKILL Ripjaws X F3-2400C11D-16GXM

DDR4-2400 HyperX Fury HX424C15FBK2/16

DDR4-3200 KINGMAX Nano Gaming RAM GLOF63F-D8KAGA

Графический адаптер

Intel HD Graphics 530

Жесткий диск

Seagate Barracuda 7200.12 ST3500418AS

Блок питания

Seasonic X-660 (660 Вт)

Операционная система

Microsoft Windows 7 (64-битная версия)

Первоочередной целью данного эксперимента, конечно же, являлось сравнение возможностей комплектов памяти DDR4 и DDR3 на одинаковых частотах. Чтобы получить более объективную картину проверка была произведена в наиболее популярных режимах работы подсистемы памяти: 1600 МГц, 2133 МГц и 2400 МГц:

Комплект памяти

Скорость работы, МГц

Набор задержек

В бенчмарках, напрямую зависящих от частоты модулей памяти, оба комплекта продемонстрировали сопоставимые результаты, причем во всех режимах. В большинстве случаев разница составляла не больше 0,5%, так что здесь между DDR4 и DDR3 наблюдается паритет.

В тестах, где измеряется задержка при чтении процессором данных из памяти и скорость работы ПК в задачах, связанных с архивированием, перевес был на стороне модулей стандарта DDR3. В среднем разница составляла 4-5%. Такой разрыв объясняется тем, что для функционирования на одинаковой частоте памяти DDR3 требуются более низкие тайминги, чем DDR4.

Приложения, которые используются для моделирования объектов и выполнения сложных расчетов, лучше реагируют на повышение частоты памяти, чем на изменение набора задержек. Поэтому в данном случае работа на более низких таймингах для памяти DDR3 не принесла практически никаких дивидендов. По крайней мере, перевес на уровне 0,6 - 0,9% мы не склонны считать тем преимуществом, на которое стоит обращать серьезное внимание.

И вот мы подобрались к самому интересному - к играм. Они запускались на встроенном в процессор графическом ядре Intel HD Graphics 530, так как при наличии дискретной видеокарты подсистема оперативной памяти является далеко не самым решающим фактором.

Из представленных выше графиков напрашивается вывод, что при сборке ПК с интегрированным GPU лучше все же отдать предпочтение старому доброму формату DDR3. Независимо от выбранного режима (1600, 2133 или 2400 МГц), преимущество было на стороне модулей DDR3 (4 - 10% в зависимости от игры).

Подводя промежуточные итоги, можно с уверенностью сказать, что для сборки настольной конфигурации, где подсистема памяти функционирует в стандартных режимах, в покупке модулей DDR4 нет никакого смысла. Зачастую они показывают чуть меньшую производительность, чем их DDR3-аналоги, и стоят при этом дороже.

Но не будем забывать, что у нового формата в запасе имеется еще один козырь - возможность работы на повышенных частотах. Например, уже сегодня на рынке без проблем можно найти модули памяти DDR4, функционирующие в режиме DDR4-3000 МГц или DDR4-3200 МГц, тогда как комплекты DDR3, как правило, ограничиваются частотами 2400 и 2666 МГц. Так что теоретически в этом случае перевес уже должен быть на стороне нового типа памяти.

На данном этапе эксперимента были задействованы следующие комплекты памяти:

Комплект памяти

Скорость работы, МГц

Набор задержек

DDR3-2400 G.SKILL Ripjaws X F3-2400C11D-16GXM (2 x 8 ГБ)

Серия проведенных тестов в полной мере подтвердила наше предположение. Конфигурация с памятью DDR4, работавшей в режиме DDR4-3200 МГц, оказалась быстрее той, где были установлены модули формата DDR3 с частотой 2400 МГц. Наибольший прирост производительности был зафиксирован в бенчмарке AIDA64: скорость всех основных процессов (чтение, запись и копирование данных) увеличилась примерно на 18 - 29%. Разница в остальных тестах оказалась не столь существенной (на уровне нескольких процентов), но все же она есть. Таким образом, если вы хотите выжать максимум из своей системы, а затраченные средства для достижения этой цели для вас не играют никакой роли, то покупка быстрых модулей стандарта DDR4 выглядит вполне оправданной затеей.

Правда, вышесказанное касается лишь программ. В играх же по-прежнему решающее значение имеет баланс между частотой и задержками. В этом плане память DDR3 смотрится лучше, даже если речь идет о ПК со встроенной графикой. Поэтому при сборке сугубо игровых систем любого уровня нет смысла переплачивать за память DDR4. Целесообразнее будет приобрести пару планок стандарта DDR3, а сэкономленные деньги доложить к покупке более быстрой видеокарты, процессора или SSD.

Последним пунктом в нашем тестировании являлись оверклокерские приложения. Производители модулей памяти DDR4 в своих рекламных буклетах очень часто вспоминают об энтузиастах разгона. Поэтому данный аспект мы просто не могли обойти стороной. Тестирование проводились в популярной оверклокерской дисциплине Super Pi 32M. В качестве соперников были выбраны следующие комплекты памяти:

Комплект памяти

Скорость работы, МГц

Набор задержек

DDR4-2400 HyperX Fury HX424C15FBK2/16 (2 x 8 ГБ)

DDR4-3200 KINGMAX Nano Gaming RAM GLOF63F-D8KAGA (2 x 4 ГБ)

Результаты тестирования памяти DDR3 (слева) и DDR4 (справа) на частоте 2400 МГц

Работая на одинаковой частоте (2400 МГц), модули памяти DDR3 и DDR4 продемонстрировали сопоставимые результаты.

Результаты тестирования памяти DDR4 на частоте 3200 МГц

Замена комплекта DDR4-2400 HyperX Fury HX424C15FBK2/16 на более быстрый DDR4-3200 KINGMAX Nano Gaming RAM GLOF63F-D8KAGA позволила сократить время прохождения теста примерно на 7 секунд - довольно большое значение по оверклокерским меркам. Так что в данной области преимущество памяти DDR4 не вызывает никакого сомнения. Похоже, что именно энтузиасты разгона комплектующих в первую очередь являются основной целевой аудиторией компаний, занимающихся выпуском производительных наборов памяти нового стандарта.

Выводы

С момента прошло больше года, но, увы, общая картина не поменялась: новый стандарт имеет массу интересных нововведений, но пока что они в полной мере не востребованы на практике. Большинству реальных приложений вполне хватает производительности, которую демонстрируют модули стандарта DDR3. Более того, работая на одинаковых частотах, у них даже есть небольшое преимущество за счет использования меньших задержек.

Хоть какая-то польза от планок DDR4 появляется лишь когда речь заходит о частотах свыше 3000 МГц. Ведь такие значения уже, как правило, недостижимы для комплектов стандарта DDR3 даже в разгоне. Правда, стоят ли те несколько лишних процентов производительности (в большинстве игр вообще прироста не будет) переплаты - еще очень большой вопрос.

и Sea Sonic Electronics за предоставленное для тестового стенда оборудование.

Статья прочитана 203656 раз(а)

Подписаться на наши каналы

Э волюция технологий стремительно шагает вперед, уступая место более прогрессивным, миниатюрным и менее ресурсоемким стандартам в области производства процессоров, SSD и оперативной памяти. Цены же на предыдущие линейки продукции стремительно падают, поскольку они уже не в силах удовлетворить все более растущим аппетитам пользовательской среды.

Во второй половине 2014 года в массовое производство вышла линейка модулей оперативной памяти DDR4. Пока новая технология получила достаточно популярности и состоялось снижение цен, прошло примерно два года, и вот теперь эти чипы стали доступными для приобретения по оптимальной цене и в оптимальной конфигурации. В связи с этим немаловажным событием мы решили подготовить для вас обзор нового стандарта RAM и рассказать, что же собой представляет оперативная память DDR4 , чем она отличается от предыдущих поколений ОЗУ и чем выделяется на фоне своих предшественников.

Вначале несколько слов о том, что же такое вообще оперативная память. Давайте на секунду вообразим, что вы являетесь менеджером среднего звена в компании, и у вас в подчинении находится штат одного из отделов, состоящий из нескольких человек. В вашей компании есть корпоративный портал, на котором публикуются все внутренние новости компании. Вы, наравне со всеми, публикуете на этом портале новые задания и требования своим подчиненным, и делаете это регулярно, каждое утро, при чем старые задачи при этом удаляются, чтобы не получилось путаницы из нагромождения задач. Каждое утро ваши коллеги открывают соответствующую страничку в браузере, и знакомятся со своими задачами на следующий день, при этом требования за предыдущие сутки уже удалены. Точно таким же способом работает и оперативная память. По сути, это некий стек информации, куда записываются служебные рабочие данные операционной системы. При каждом выключении компьютера содержимое ОЗУ удаляется и заполняется заново по мере запуска новых приложений. Объем ОЗУ может варьироваться примерно от 1-2 ГБ до 16-32 ГБ для современных игровых систем, требующих большого количества системных ресурсов. Бывали времена, когда объем RAM составлял и вовсе несколько МБ, но это уже история.

Первой платформой, на которой стала возможной установка чипов DDR4, стала линейка Intel Haswell-E и, соответственно, платформа X99 Express, вышедшие в третьем квартале 2014-го года. На ее основе был выпущен новый флагманский 8-ядерный процессор Core i7-5960X, а первой материнской платой, поддерживающей его, стала ASUS X99-DELUXE. Непременно стоит заметить, что главной фичей этой технологии стала поддержка нового стандарта ОЗУ — DDR4.

Теперь небольшое обращение к историческим фактам. По сути, разработка DDR4 была начата еще в 2005-ом году ассоциацией JEDEC, однако первые устройства на ее основе попали в продажу лишь весной 2014-го. Перед инженерами JEDEC стояла задача достигнуть большего уровня мощности и стабильности по сравнению с DDR3. Более того, была поставлена задача увеличить энергоэффективность следующего стандарта. Впрочем, такие обещания мы слышим буквально в каждом анонсе. Какого же прогресса инженерам удалось на самом деле достичь?

Как и более ранним моделям чипов, DDR4 удалось перенять технологию 2n-prefetch (JEDEC в своих разработках называют ее 8n-Prefetch). Какой-угодно чип памяти нового образца способен вмещать в себя две или четыре дискретные группы банков.

Чтобы посмотреть на реальный пример модуля, давайте поближе взглянем на DDR4-чип вместимостью в 8 гигабайт, оснащенный шиной данных с 4-битным размером. Такая плата вмещает в себя 4 группы банков с 4 банками в индивидуальной группе. В каждом банке расположены 131072 линии объемом в 512 байт каждая. Чтобы было с чем сравнить, давайте повнимательнее рассмотрим соответствующий DDR3-модуль. Подобный чип вмещает в себя лишь 8 автономных банков. Каждый банк содержит 65536 линий, а в каждой линии – 2048 байт памяти. Как вы сами могли заметить, длина каждой из линий модуля DDR4 в четыре раза короче ширины линии DDR3. Это значит, что оперативная память DDR4 выполняет пересмотр банков памяти гораздо быстрее, чем DDR3. Более того, сами банки памяти переключаются намного скорее. Здесь же необходимо заметить, что для каждого индивидуального набора банков предусматривается выбор всевозможных операций (восстановление, извлечение, запись либо активация), что дает возможность увеличить уровень апертуры и эффективности памяти.

Производительность

Существенное нововведение в стандарт DDR4 – применение интерфейса, задействующего топологию под названием «точка-точка», когда в DDR3 применяется шина Multii-Drop. Для чего это необходимо? Внутреннее строение шины Multi-Drop подразумевает эксплуатацию только пары каналов, связывающих модули с контроллером ОЗУ. Когда задействуются сразу четыре порта DIMM, контроллер устанавливает связь с каждой парой плат RAM при участии только одного единственного канала. Такое положение вещей самым негативным образом влияет на эффективность подсистемы оперативной памяти.

В конструкции шины, использующей апертуру «точка-точка», для индивидуального разъема DIMM предусматривается дискретный канал, а именно каждый отдельный модуль станет самым прямым образом присоединяться к контроллеру, не разделяя данный канал ни с кем другим. Похожее инновационное решение мы уже могли наблюдать во время перехода видеокарт от стандарта PCI к PCI Express. Разумеется, представленный подход обладает и собственными недочетами. Так, к примеру, 4-канальные системы окажутся ограничены четырьмя слотами DIMM, а 2-канальные – двумя. Тем не менее, если брать в расчет более значимую вместимость модулей DDR4, это никоим образом не приведет к ограничению пользователей. Более подробно мы поговорим об этом в последующем.

Каждый из модулей оперативной памяти DDR4 с DIMM-разъемом обладает 288 контактами. Число пинов оказалось увеличенным с такой целью, чтобы можно было осуществлять адресацию наибольшего возможного объема RAM. Наибольший объем одного модуля RAM равен 128 ГБ (здесь имеется в виду применение кристаллов вместимостью 8 ГБ и технологии QPD, предназначение которой состоит в размещении четырех чипов в едином корпусе). Довольно вероятным является и задействование 16-ГБ кристаллов с большей вместимостью, а также более емкой упаковки (до 8 кристаллов в едином корпусе). При обозначенных условиях, вместимость одного модуля RAM может быть равна 512 ГБ.

Между прочим, будет увеличена не только вместимость модулей RAM, но и их частота. В пределах стандарта DDR4 действительная частота может составить позиции в 2133 МГц.

Энергоэффективность

С целью понижения потребления энергии и выделения тепла стандарт DDR4 подразумевает еще одно понижение активного напряжения. В этот раз до 1,2 В. В дополнение к этому, в самом чипе показатель напряжения был, в свою очередь, увеличен, а это предоставило возможность гарантировать более скоростной доступ и при аналогичных условиях минимизировать ток утечки. Судя по теоретическим изложениям, общее потребление энергии у DDR4 окажется на 30% ниже, чем у DDR3. Образовавшийся запас компании-производители, наиболее вероятно, станут использовать на рост частоты ОЗУ.

Надежность

Оставшиеся изменения имеют отношение, прежде всего, к надежности девайсов. К примеру, чипы оперативной памяти DDR4 способны собственными усилиями обнаруживать, идентифицировать и фиксить ошибки, которые имеют отношение к управлению четностью команд и адресов. Помимо этого, стандарт DDR4 осуществляет поддержку операции проверки соединений, вследствие которой основной контроллер вправе идентифицировать ошибки, не задействовав инициализирующие цепочки DRAM. В дополнение, оказался дошлифованным регистр памяти. Отныне есть возможность сконфигурировать его таким образом, чтобы блокировались команды, которые содержат ошибки управления четностью. Регистр в предыдущем стандарте, DDR3, не имел подобной функции, и команды, совмещающие ошибки управления четностью, время от времени добирались до чипов RAM, что было одной из первых причин сбоев в функционировании ПК. В дополнение к перечисленным ранее фишкам, новая память DDR4 включает в себя еще ряд вспомогательных опций, которые направлены на усовершенствование надежности подсистемы памяти. Одна из них – это проверка сумм контроля прежде, чем будет осуществлена запись в память.

На сегодняшний день выбор оперативной памяти DDR4 в любом случае становится беспроигрышным вариантом. Чипы уже получили достаточное распространение, чтобы планировать их к покупке. Это отличный задел в производительности компьютера на будущее, а учитывая постоянное снижение цен на модули небольшого объема, такие чипы и вовсе становятся лакомым кусочком. На чипы DDR4 цена варьируется от 2400 рублей за один маломощный модуль объемом 8 ГБ частотой 2133 МГЦ до 5900 рублей за набор из двух чипов объемом по 8 ГБ каждый частотой 2666 МГЦ. Важно отметить, что лучше приобрести два модуля малой мощности, чем один сверхпроизводительный, поскольку пара модулей одинаковой частоты со схожими характеристиками работает в параллельном режиме, что добавляет еще 10-15% к общей скорости работы ПК.

На этом обзор новшеств, которые принесла нам оперативная память DDR4, подходит к концу. Изучив множество описаний и технических характеристик нового стандарта, в теории все выглядит довольно многообещающе. Кроме базовых усовершенствований (более высокие частоты и низкое напряжение), технология стала поддерживать новую шину и ряд инноваций, призванных повысить надежность использования ОЗУ. Последняя абилка из упомянутых особенно полезной будет на поприще серверного сегмента, что уже огромный «плюс» для выполнения корпоративных задач.

JEDEC Solid State Technology Association, ранее известная как Electron Devices Engineering Council (JEDEC), является независимой инженерной организацией, полупроводниковой торговли и органом по стандартизации.
На протяжении более 50 лет, JEDEC является мировым лидером в разработке открытых стандартов и публикаций для микроэлектронной промышленности.

Стандартизирующая организация JEDEC Solid State Technology Association представила официальную финальную версию спецификацию стандарта оперативной памяти Synchronous DDR4 (Double Data Rate 4).

Его введения является обеспечение нового уровня производительности оперативной памяти, её надёжности и сокращения уровня энергопотребления.

Память DDR4 включает в себя целый ряд современных достижений, которые позволят новому типу памяти получить широкое распространение в компьютерных устройствах - от бытовых приборов до серверов и еще более мощных компьютерных систем.

Уровень быстродействия на один разъём в DDR4 установлен на 1,6 миллиарда пересылок в секунду, с возможностью в будущем достичь максимального уровня 3,2 млрд/с.
Минимальная рабочая частота памяти DDR4 составляет 2133 МГц до 4266 МГц, что на 1000 МГц больше, чем у своей предшественницы (1333 МГц и 1666 МГц в стандарте прошлого поколения).

Для памяти с частотой 2133 МГц (наименьшая частота для памяти DDR4) максимальная пропускная способность составит 2133 x 8 = 17 064 МБайт/с.
Для памяти с частотой 4266 МГц (наибольшая частота, определенная в стандарте) максимальная пропускная способность составит 4266 x 8 = 34 128 МБайт/с.

Рабочее напряжение понижено: 1,1 В - 1,2 В против 1,5 В в DDR3.
Предполагаемый техпроцесс - 32 и 36 нм.

Архитектура DDR4 позволяет осуществлять предварительную выборку 8 бит данных за один такт (8n prefetch) с двумя или четырьмя выбираемыми группами блоков памяти.
Это позволяет устройствам проводить независимые друг от друга операции по активации, чтению, записи и обновлению посредством отдельных блоков памяти.

Все перечисленные возможности, а также еще целый ряд более мелких изменений и нововведений позволили существенно повысить эффективность памяти DDR4.

DDR4 модуль имеет 284 контактов, в то время как у стандартных модулей DDR3 есть только 240 контактов.
В SO-DIMM версии будут представлены 256 контактов, а DDR3 SO-DIMM имеют только 204 контакта.

В спецификациях DDR4 впервые появилось описание работы с памятью в многокристальной упаковке.
Стандартом допускается столбик (стек) из восьми кристаллов.
Причём все кристаллы «вешаются» на общие сигнальные линии.
Сделано это не потому, что так лучше (хотя это действительно упрощает действия по расширению пространства памяти), а по тем причинам, что в целом идеология работы памяти DDR4 - это соединение модулей с контроллерами по схеме «точка-точка».

Каналов будет много, а не два-четыре, поэтому каждому из них необходимо обеспечить максимально возможную производительность, не перегружая при этом механизмы обмена.
В том же ключе надо рассматривать возможность независимой одновременной работы двух или четырёх банков памяти.
Для каждой группы банков архитектурно разрешены одновременно все основные операции, такие как чтение, запись и регенерация.

По прогнозу iSuppli, к 2014 году уровень проникновения на рынок памяти DDR4 составит 12%, к 2015 - 56%.
Однако, производители могут и поторопиться с началом внедрения нового стандарта, побуждаемые желанием поднять цены на свои продукты, которые сейчас находятся на крайне низком уровне.

Micron, например, ещё в мае анонсировала разработку первого полнофункционального модуля и планы по началу их массового производства в конце нынешнего года.
Samsung уже продемонстрировал 284-контактную память PC4-17000 (2133 Мгц).
Остаётся только дождаться их поддержки от Intel и AMD.

Intel планирует начать поддержку DDR4 в начале 2014 года в высокопроизводительных 4-сокетных серверных системах на процессорах Haswell-EX, обычным же пользователям придётся, вероятно, подождать 2015 года, так как ни в 22 нм процессорах Haswell, ни в следующих за ними 14 нм Broadwell поддержка DDR4 не предусмотрена.

Стандарт DDR4 является всего лишь одним из первых шагов на пути к повсеместному внедрению памяти следующего поколения.

В числе областей применения памяти DDR4 названы серверы, ноутбуки, настольные ПК и изделия потребительской электроники.
Вначале DDR4 появится в серверных системах и уже после этого стартует массовое производство такой памяти для потребительских компьютеров.

NVIDIA GeForce Experience обновилось до версии 3.20.2

23 декабря 2019 г. компания NVIDIA обновила приложение NVIDIA GeForce Experience (GFE) для Windows до версии 3.20.2.
Обновление исправляет опасную уязвимость CVE-2019-5702.

Возможно Microsoft упростит жизнь пользователям Windows 10

По данным инсайдера WalkingCat компания Microsoft планирует кардинально изменить схему обновлений для своей операционной системы Windows 10.