Pci экспресс слот. Существующие разъемы и виды портов. Типы устройств, использующих PCI Express x2, x4, x8, x12, x16 и x32

Энциклопедичный YouTube

  • 1 / 5

    В отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, в общем случае, является пакетной сетью с топологией типа звезда.

    Устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором.

    Кроме того, шиной PCI Express поддерживается:

    • гарантированная полоса пропускания (QoS);
    • управление энергопотреблением;
    • контроль целостности передаваемых данных.

    Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и тем более PCI и PCI-X . Де-факто PCI Express заменила эти шины в персональных компьютерах.

    Разъёмы

    • MiniCard (Mini PCIe) - замена форм-фактора Mini PCI . На разъём Mini Card выведены шины: x1 PCIe, USB 2.0 и SMBus.
    • ExpressCard - подобен форм-фактору PCMCIA . На разъём ExpressCard выведены шины x1 PCIe и USB 2.0, карты ExpressCard поддерживают горячее подключение.
    • AdvancedTCA - форм-фактор для телекоммуникационного оборудования.
    • Mobile PCI Express Module (MXM) - промышленный форм-фактор, созданный для ноутбуков фирмой NVIDIA . Его используют для подключения графических ускорителей.
    • Кабельные спецификации PCI Express позволяют доводить длину одного соединения до десятков метров, что делает возможным создание ЭВМ, периферийные устройства которой находятся на значительном удалении.
    • StackPC - спецификация для построения наращиваемых компьютерных систем. Данная спецификация описывает разъёмы расширения StackPC, FPE и их взаимное расположение.

    PCI Express X1

    Mini PCI-E

    Mini PCI Express - формат шины PCI Express для портативных устройств.

    Для этого стандарта разъёма выпускается много периферийных устройств:

    SSD Mini PCI Express

    • Питание 3.3 В

    ExpressCard

    Слоты ExpressCard на настоящее время (ноябрь 2010) применяются для подключения:

    • Плат SSD накопителей
    • Видеокарт
    • Контроллеров 1394/FireWire (iLINK)
    • Док-станций
    • Измерительных приборов
    • Памяти
    • Адаптеров карт памяти (CF, MS, SD, xD, и т. д.)
    • Мышей
    • Сетевых адаптеров
    • Параллельных портов
    • Адаптеров PC Card/PCMCIA
    • Расширения PCI
    • Расширения PCI Express
    • Дистанционного управления
    • Контроллеров SATA
    • Последовательных портов
    • Адаптеров SmartCard
    • ТВ-тюнеров
    • Контроллеров USB
    • Беспроводных сетевых адаптеров Wi-Fi
    • Беспроводных широкополосных интернет-адаптеров (3G, CDMA, EVDO, GPRS, UMTS, и т. д.)
    • Звуковых карт для домашнего мультимедиа и профессиональных аудиоинтерфейсов.

    Описание протокола

    Для подключения устройства PCI Express используется двунаправленное последовательное соединение типа точка-точка , называемое линией (англ. lane - полоса, ряд); это резко отличается от PCI , в которой все устройства подключаются к общей 32-разрядной параллельной двунаправленной шине.

    Конкурирующие протоколы

    Кроме PCI Express, существует ещё ряд высокоскоростных стандартизованных последовательных интерфейсов, вот только некоторые из них: HyperTransport , InfiniBand , RapidIO , и StarFabric. Каждый интерфейс имеет своих сторонников среди промышленных компаний, так как на разработку спецификаций протоколов уже ушли значительные суммы, и каждый консорциум стремится подчеркнуть преимущества именно своего интерфейса над другими.

    Стандартизированный высокоскоростной интерфейс, с одной стороны, должен обладать гибкостью и расширяемостью, а с другой стороны, должен обеспечивать низкое время задержки и невысокие накладные расходы (то есть доля служебной информации пакета не должна быть велика). В сущности, различия между интерфейсами заключаются именно в выбранном разработчиками конкретного интерфейса компромиссе между этими двумя конфликтующими требованиями.

    К примеру, дополнительная служебная маршрутная информация в пакете позволяет организовать сложную и гибкую маршрутизацию пакета, но увеличивает накладные расходы на обработку пакета, также снижается пропускная способность интерфейса, усложняется программное обеспечение, которое инициализирует и настраивает устройства, подключенные к интерфейсу. При необходимости обеспечения горячего подключения устройств необходимо специальное программное обеспечение, которое бы отслеживало изменение в топологии сети. Примерами интерфейсов, которые приспособлены для этого, являются RapidIO, InfiniBand и StarFabric.

    В то же время, укорачивая пакеты, можно уменьшить задержку при передаче данных, что является важным требованием к интерфейсу памяти. Но небольшой размер пакетов приводит к тому, что доля служебных полей пакета увеличивается, что снижает эффективную пропускную способность интерфейса. Примером интерфейса такого типа является HyperTransport.

    Положение PCI Express - между описанными подходами, так как шина PCI Express предназначена для работы в качестве локальной шины, нежели шины процессор-память или сложной маршрутизируемой сети. Кроме того, PCI Express изначально задумывалась как шина, логически совместимая с шиной PCI, что также внесло свои ограничения.

    Введение

    Закон Мура гласит, что количество транзисторов на кристалле кремния, который выгодно производить, удваивается каждые пару лет. Но не нужно думать, что скорость процессора тоже удваивается каждые пару лет. Подобное заблуждение встречается у многих, и пользователи часто ожидают масштабирования производительности ПК по экспоненте.

    Впрочем, как вы наверняка заметили, топовые процессоры на рынке застряли на уровне между 3 и 4 ГГц уже лет шесть. И компьютерной индустрии пришлось искать новые способы увеличения производительности вычислений. Наиболее важный из этих способов заключается в поддержании баланса между компонентами платформы, которые используют шину PCI Express – открытый стандарт, который позволяет скоростным видеокартам, картам расширения и другим комплектующим обмениваться информацией. И интерфейс PCI Express не менее важен для масштабирования производительности, чем многоядерные процессоры. Если двуядерные, четырёхъядерные и шестиядерные процессоры можно нагрузить только с помощью приложений, оптимизированных под многопоточность, любая программа, установленная на вашем компьютере, так или иначе взаимодействует с компонентами, подключёнными через PCI Express.


    Многие журналисты и специалисты ожидали, что материнские платы и чипсеты с поддержкой интерфейса PCI Express 3.0 следующего поколения появятся в первом квартале 2010. К сожалению, проблемы с обратной совместимостью отсрочили выход PCI Express 3.0, и сегодня прошло уже полгода, но мы до сих пор ждём официальной информации по поводу публикации нового стандарта.

    Впрочем, мы пообщались с группой PCI-SIG (Special Interest Group, которая отвечает за стандарты PCI и PCI Express), что позволило нам получить некоторые ответы.

    PCI Express 3.0: планы

    Эл Янс (Al Yanes), президент и председатель PCI-SIG, и Рамин Нешати (Ramin Neshati), председатель PCI-SIG Serial Communications Workgroup, поделились текущими планами по поводу внедрения PCI Express 3.0.



    Нажмите на картинку для увеличения.

    23 июня 2010 вышла версия 0.71 спецификации PCI Express 3.0. Янс утверждал, что версия 0.71 должна устранить все проблемы с обратной совместимостью, которые привели к первоначальной задержке. Нешати отметил, что основная проблема с совместимостью заключалась в функции "DC wandering", которую он объяснил так, что устройства PCI Express 2.0 и более ранние "не давали нужных нуликов и единичек", чтобы соответствовать интерфейсу PCI Express 3.0.

    Сегодня, когда проблемы с обратной совместимостью решены, PCI-SIG готова представить базовую версию 0.9 "позднее этим летом". И за этой базовой версией ожидается уже версия 1.0 в четвёртом квартале этого года.

    Конечно, самый интригующий вопрос заключается в том, когда материнские платы PCI Express 3.0 появятся на прилавках магазинов. Нешати отметил, что он ожидает появления первых продуктов в первом квартале 2011 года (треугольник "FYI" на картинке с планом).

    Нешати добавил, что между версиями 0.9 и 1.0 не должно произойти изменений на уровне кристалла кремния (то есть все изменения будут затрагивать только программное обеспечение и прошивку), так что некоторые продукты должны выйти на рынок ещё до появления финальной спецификации 1.0. И продукты уже могут сертифицироваться для списка PCI-SIG "Integrator’s List" (треугольник "IL"), который является вариантом логотипа соответствия PCI-SIG.

    Нешати в шутку назвал третий квартал 2011 как дату "Fry’s and Buy" (вероятно, ссылаясь на сайты Frys.com, Buy.com или Best Buy). То есть в этот период мы должны ожидать появление большого количества продуктов с поддержкой PCI Express 3.0 в розничных магазинах и в интернет-магазинах.

    PCI Express 3.0: разработан для скорости

    Для конечных пользователей основное отличие между PCI Express 2.0 и PCI Express 3.0 будет заключаться в значительном увеличении максимальной пропускной способности. У PCI Express 2.0 сигнальная скорость передачи составляет 5 GT/s, то есть пропускная способность равняется 500 Мбайт/с для каждой линии. Таким образом, основной графический слот PCI Express 2.0, который обычно использует 16 линий, обеспечивает двунаправленную пропускную способность до 8 Гбайт/с.

    У PCI Express 3.0 мы получим удвоение этих показателей. PCI Express 3.0 использует сигнальную скорость 8 GT/s, что даёт пропускную способность 1 Гбайт/с на линию. Таким образом, основной слот для видеокарты получит пропускную способность до 16 Гбайт/с.

    На первый взгляд увеличение сигнальной скорости с 5 GT/s до 8 GT/s не кажется удвоением. Однако стандарт PCI Express 2.0 использует схему кодирования 8b/10b, где 8 бит данных передаются в виде 10-битных символов для алгоритма устранения ошибок. В итоге мы получаем 20% избыточность, то есть снижение полезной пропускной способности.

    PCI Express 3.0 переходит на намного более эффективную схему кодирования 128b/130b, устраняя 20% избыточность. Поэтому 8 GT/s – это уже не "теоретическая" скорость; это фактическая скорость, сравнимая по производительности с сигнальной скоростью 10 GT/s, если бы использовался принцип кодирования 8b/10b.



    Нажмите на картинку для увеличения.

    Мы поинтересовались у Янса насчёт устройств, которые потребуют повышение в скорости. Он ответил, что они будут включать "коммутаторы PLX, контроллеры Ethernet 40 Гбит/с, InfiniBand, твёрдотельные устройства, которые становятся всё популярнее, и, конечно, видеокарты". Он добавил "Мы не исчерпали инновации, они появляются не статически, это непрерывный поток", они открывают путь для дальнейших улучшений в будущих версиях интерфейса PCI Express.

    Анализ: где мы будем использовать PCI Express 3.0?

    Накопители

    AMD уже интегрировала поддержку SATA 6 Гбит/с в свою 8-ю линейку чипсетов, да и производители материнских плат добавляют контроллеры USB 3.0. Intel в этой области немного отстаёт, поскольку не поддерживает в чипсетах USB 3.0 или SATA 6 Гбит/с (у нас в лаборатории уже появились предварительные образцы материнских плат на P67, и у них присутствует поддержка SATA 6 Гбит/с, но USB 3.0 в этом поколении мы не получим). Впрочем, как мы уже неоднократно видели в противостоянии AMD и Intel, инновации AMD часто вдохновляют Intel. Учитывая скорости интерфейса накопителей следующего поколения и периферии, пока нет необходимости переносить любую из технологий на PCI Express 3.0. И для USB 3.0 (5 Гбит/с), и для SATA 6 Гбит/с (пока ещё не появилось накопителей, которые бы подошли к пределам этого интерфейса) будет достаточно одной линии PCI Express второго поколения.

    Конечно, когда дело касается накопителей, то взаимодействие между приводами и контроллерами – это только часть вопроса. Представьте себе массив из нескольких SSD с интерфейсом SATA 6 Гбит/с у чипсета, когда массив RAID 0 потенциально может нагрузить одну линию PCI Express второго поколения, которую большинство производителей материнских плат используют для подключения контроллера. Так что определиться с тем, могут ли интерфейсы USB 3.0 и SATA 6 Гбит/с действительно требовать поддержки PCI Express 3.0, можно после несложных подсчётов.



    Нажмите на картинку для увеличения.

    Как мы уже упоминали, интерфейс USB 3.0 даёт максимальную скорость 5 Гбит/с. Но и как стандарт PCI Express 2.1, USB 3.0 использует кодирование 8b/10b, то есть фактическая пиковая скорость составляет 4 Гбит/с. Поделите биты на восемь, чтобы преобразовать в байты, и вы получите пиковую пропускную способность 500 Мбайт/с – как раз такую же, что и у одной линии нынешнего стандарта PCI Express 2.1. SATA 6 Гбит/с работает со скоростью 6 Гбит/с, но здесь тоже используется схема кодирования 8b/10b, в результате которой теоретические 6 Гбит/с превращаются в фактические 4,8 Гбит/с. Опять же, преобразуйте это значение в байты, и вы получите 600 Мбайт/с или на 20% больше, чем может обеспечить линия PCI Express 2.0.

    Впрочем, проблема кроется в том, что даже самые быстрые SSD сегодня не могут полностью загрузить подключение SATA 3 Гбит/с. Периферия и близко не подходит к нагрузке интерфейса USB 3.0, то же самое можно сказать и про последнее поколение SATA 6 Гбит/с. По крайней мере, сегодня интерфейс PCI Express 3.0 не является необходимым для активного его продвижения на рынке платформ. Но будем надеяться, что по мере перехода Intel на производство флэш-памяти NAND третьего поколения, тактовые частоты будут возрастать, и мы получим устройства, способные превысить уровень 3 Гбит/с у портов SATA второго поколения.

    Видеокарты

    Мы проводили собственные исследования влияния пропускной способности PCI Express на производительность видеокарт – после выхода на рынок PCI Express 2.0 , в начале 2010 года , а также и совсем недавно . Как мы обнаружили, очень сложно нагрузить пропускную способность x16, которая на данный момент доступна у материнских плат PCI Express 2.1. Вам потребуется конфигурация на нескольких GPU или экстремальная high-end видеокарта на одном GPU, чтобы вы смогли обнаружить разницу между подключениями x8 и x16.

    Мы попросили AMD и Nvidia прокомментировать потребность в PCI Express 3.0 - потребуется ли эта скоростная шина для раскрытия всего потенциала производительности видеокарт следующего поколения? Представитель AMD сообщил нам, что пока не может давать комментарии.


    Нажмите на картинку для увеличения.

    Представитель Nvidia оказался более сговорчивым: "Nvidia играла одну из ключевых ролей в индустрии при разработке PCI Express 3.0, который должен в два раза увеличить пропускную работу стандарта текущего поколения (2.0). Когда происходят подобные существенные увеличения пропускной способности, то появляются приложения, которые могут их использовать. От нового стандарта выиграют потребители и профессионалы, благодаря увеличенной производительности графики и вычислений в ноутбуках, настольных ПК, рабочих станциях и серверах, где есть GPU".

    Возможно, ключевой можно назвать фразу "появятся приложения, которые могут их использовать". Похоже, в мире графики ничего не уменьшается. Дисплеи становятся больше, высокое разрешение выходит на смену стандартному разрешению, текстуры в играх становятся всё более детализованными и интригующими. Сегодня мы не считаем, что даже у новейших топовых видеокарт есть потребность в использовании интерфейса PCI Express 3.0 с 16 линиями. Но энтузиасты из года в год наблюдают повторение истории: прогресс технологии прокладывает путь для новых способов задействовать "более толстые трубы". Возможно, мы получим взрывной рост приложений, которые сделают вычисления на GPU более массовыми. Или, возможно, падение производительности, которое наблюдается при выходе за пределы памяти видеокарты, когда начинается подкачка из системной памяти, будет уже не таким ощутимым у массовых и low-end продуктов. В любом случае, нам предстоит увидеть инновации, которые PCI Express 3.0 позволит реализовать AMD и Nvidia.

    Подключения компонентов материнской платы

    AMD и Intel всегда очень неохотно делятся информацией по поводу интерфейсов, которые они используют для связи компонентов чипсета или логических "кирпичиков" в северном/южном мостах. Мы знаем скорость, с которой работают эти интерфейсы, а также и то, что они разрабатываются так, чтобы, по возможности, не создавать "узких мест". Иногда мы знаем, кто произвёл определённую часть системной логики, например, AMD использовала в SB600 контроллер SATA на основе разработки Silicon Logic. Но технологии, используемые для наведения мостиков между компонентами, часто остаются "белыми пятнами". PCI Express 3.0, конечно, кажется весьма привлекательным решением, наподобие интерфейса A-Link, который использует AMD.

    Недавнее появление контроллеров USB 3.0 и SATA 6 Гбит/с на большом количестве материнских плат тоже позволяет оценить ситуацию. Поскольку чипсет Intel X58 не предоставляет "родную" поддержку ни одной из двух технологий, компаниям, таким как Gigabyte, приходится интегрировать на материнские платы контроллеры, используя для их подключения доступные линии.

    У материнской платы Gigabyte EX58-UD5 нет поддержки ни USB 3.0, ни SATA 6 Гбит/с. Однако у неё есть слот x4 PCI Express.



    Нажмите на картинку для увеличения.

    Gigabyte заменила материнскую плату EX58-UD5 новой моделью X58A-UD5, которая имеет поддержку двух портов USB 3.0 и двух портов SATA 6 Гбит/с. Где Gigabyte нашла пропускную способность, чтобы поддержать две этих технологии? Компания взяла под одной линии PCI Express 2.0 для каждого контроллера, урезав возможности по установке карт расширения, но вместе с тем обогатив функциональность материнской платы.

    Помимо добавления USB 3.0 и SATA 6 Гбит/с, единственное заметное отличие между двумя материнскими платами касается удаления слота x4.



    Нажмите на картинку для увеличения.

    Позволит ли интерфейс PCI Express 3.0, как стандарты до него, добавлять на материнские платы будущие технологии и контроллеры, которые не будут присутствовать в текущих поколениях чипсетов в интегрированном виде? Как нам кажется, так и будет.

    CUDA и параллельные вычисления

    Мы вступаем в эпоху настольных суперкомпьютеров. В наших системах работают графические процессоры с интенсивной параллельной обработкой данных, а также блоки питания и материнские платы, способные поддерживать одновременную работу до четырёх видеокарт. Технология Nvidia CUDA позволяет преобразовать видеокарту в инструмент для программистов по расчётам не только в играх, но и в научных сферах, и в инженерных приложениях. Интерфейс программирования уже прекрасно зарекомендовал себя при разработке разнообразных решений для корпоративного сектора , включая обработку изображений в медицине, математику, работы по разведыванию месторождений нефти и газа.



    Нажмите на картинку для увеличения.

    Мы поинтересовались мнением программиста OpenGL Терри Велша (Terry Welsh) из компании Really Slick Screensavers насчёт PCI Express 3.0 и вычислений на GPU. Терри сообщил нам, что "PCI Express получил хороший рывок, и мне нравится, что разработчики удваивают пропускную способность когда захотят - как с версией 3.0. Однако в проектах, над которыми мне приходится работать, я не ожидаю увидеть какую-либо разницу. Большая часть моей работы связана с авиасимуляторами, но они, как правило, упираются в память и производительность ввода/вывода жёсткого диска; графическая шина не является "узким местом" вообще. Но я могу с лёгкостью предвидеть, что шина PCI Express 3.0 обусловит существенное продвижение вперёд для сферы вычислений на GPU; для людей, которые выполняют научную работу с большими массивами данных".



    Нажмите на картинку для увеличения.

    Возможность удвоить скорость передачи данных при работе с нагрузками, интенсивно использующими математику, безусловно, мотивирует разработки CUDA и Fusion. И в этом заключается одна из самых обещающих сфер для грядущего интерфейса PCI Express 3.0.

    Любой геймер с чипсетом Intel P55 может рассказать о преимуществах и недостатках Intel P55 по сравнению с чипсетом Intel X58. Преимущество: большинство материнских плат на чипсете P55 стоят более разумно, чем модели на Intel X58 (в целом, конечно). Недостаток: у P55 минимальные возможности по подключению PCI Express, основная задача возложена на процессоры Intel Clarkdale и Lynnfield, которые обладают 16 линиями PCIe второго поколения в самом CPU. Между тем, X58 может похвастаться 36 линиями PCI Express 2.0.

    Для покупателей P55, которые желают использовать две видеокарты, их придётся подключать через x8 линий каждую. Если вы захотите добавить к платформе Intel P55 третью видеокарту, то придётся использовать линии чипсета - но они, к сожалению, ограничены скоростью первого поколения, да и чипсет может выделить, максимум, четыре линии для слота расширения.

    Когда мы поинтересовались у Эла Янса из PCI-SIG тем, сколько линий можно ожидать в чипсетах с поддержкой PCI Express 3.0 от AMD и Intel, то он ответил, что это "частная информация", которую он "не может раскрыть". Конечно, мы не ожидали получить ответ, но вопрос всё равно задать стоило. Впрочем, вряд ли AMD и Intel, которые входят в состав PCI-SIG Board of Directors, стали бы инвестировать время и деньги в PCI Express 3.0, если бы они планировали использовать новый стандарт PCI Express просто как средство снижения числа линий. Как нам кажется, в будущем чипсеты AMD и Intel будут по-прежнему сегментироваться так, как мы наблюдаем сегодня, у high-end платформ будет достаточно возможностей для подключения пары видеокарт с полным интерфейсом x16, а у чипсетов для массового рынка число линий будет урезано.

    Представьте себе чипсет, подобный Intel P55, но с 16 доступными линиями PCI Express 3.0. Поскольку эти 16 линий работают в два раза быстрее PCI Express 2.0, то мы получим эквивалент 32 линиям старого стандарта. В такой ситуации от Intel будет зависеть, пожелает ли она сделать чипсет совместимым с конфигурациями 3-way и 4-way GPU. К сожалению, как мы уже знаем, чипсеты следующего поколения Intel P67 и X68 будут ограничены поддержкой PCIe 2.0 (а процессоры Sandy Bridge будут точно так же ограничены поддержкой 16 линий на кристалле).

    Помимо параллельных вычислений CUDA/Fusion, мы также видим рост возможностей систем для массового рынка благодаря повышению скорости связи компонентов PCI Express 3.0 - здесь, как нам кажется, тоже скрыт немалый потенциал. Вне всякого сомнения, PCI Express 3.0 улучшит возможности недорогих материнских плат, которые в предыдущем поколении были доступны только high-end платформам. А high-end платформы, получившие в своё распоряжение PCI Express 3.0, позволят нам поставить новые рекорды по производительности благодаря инновациям в графике, подсистеме хранения данных и сетевых технологиях, которые смогут использовать доступную пропускную способность шины.

    Весной 1991 года компания Intel завершает разработку первой макетной версии шины PCI. Перед инженерами была поставлена задача разработать недорогое и производительное решение, которое позволило бы реализовать возможности процессоров 486, Pentium и Pentium Pro. Кроме того, было необходимо учесть ошибки, допущенные VESA при проектировании шины VLB (электрическая нагрузка не позволяла подключать более 3 плат расширения), а также реализовать автоматическую настройку устройств.

    В 1992 году появляется первая версия шины PCI, Intel объявляет, что стандарт шины будет открытым, и создаёт PCI Special Interest Group. Благодаря этому любой заинтересованный разработчик получает возможность создавать устройства для шины PCI без необходимости приобретения лицензии. Первая версия шины имела тактовую частоту 33 МГц, могла быть 32- или 64-битной, а устройства могли работать с сигналами в 5 В или 3,3 В. Теоретически пропускная способность шины 133 Мбайт/с, однако в реальности пропускная способность составляла около 80 Мбайт/с.

    Основные характеристики:


    • частота шины - 33,33 или 66,66 МГц, передача синхронная;
    • разрядность шины - 32 или 64 бита, шина мультиплексированная (адрес и данные передаются по одним и тем же линиям);
    • пиковая пропускная способность для 32-разрядного варианта, работающего на частоте 33,33 МГц - 133 Мбайт/с;
    • адресное пространство памяти - 32 бита (4 байта);
    • адресное пространство портов ввода-вывода - 32 бита (4 байта);
    • конфигурационное адресное пространство (для одной функции) - 256 байт;
    • напряжение - 3,3 или 5 В.

    Фото разъемов:

    MiniPCI - 124 pin
    MiniPCI Express MiniSata/mSATA - 52 pin
    Apple MBA SSD, 2012
    Apple SSD, 2012
    Apple PCIe SSD
    MXM, Graphics Card, 230 / 232 pin

    MXM2 NGIFF 75 pins

    KEY A PCIe x2

    KEY B PCIe x4 Sata SMBus

    MXM3, Graphics Card, 314 pin
    PCI 5V
    PCI Universal
    PCI-X 5v
    AGP Universal
    AGP 3.3 v
    AGP 3.3 v + ADS Power
    PCIe x1
    PCIe x16
    Custom PCIe
    ISA 8bit

    ISA 16bit
    eISA
    VESA
    NuBus
    PDS
    PDS
    Apple II / GS Expasion slot
    PC/ XT / AT expasion bus 8 bit
    ISA (industry standard architecture) - 16 bit
    eISA
    MBA - Micro Bus architecture 16 bit
    MBA - Micro Bus architecture с видео 16 bit
    MBA - Micro Bus architecture 32 bit
    MBA - Micro Bus architecture с видео 32 bit
    ISA 16 + VLB (VESA)
    Processor Direct Slot PDS
    601 Processor Direct Slot PDS
    LC Processor Direct Slot PERCH
    NuBus
    PCI (Peripheral Computer Interconnect) - 5v
    PCI 3.3v
    CNR (Communications / network Riser)
    AMR (Audio / Modem Riser)
    ACR (Advanced communication Riser)
    PCI-X (Периферийный PCI) 3.3v
    PCI-X 5v
    PCI 5v + RAID option - ARO
    AGP 3.3v
    AGP 1.5v
    AGP Universal
    AGP Pro 1.5v
    AGP Pro 1.5v+ADC power
    PCIe (peripheral component interconnect express) x1
    PCIe x4
    PCIe x8
    PCIe x16

    PCI 2.0

    Первая версия базового стандарта, получившая широкое распространение, использовались как карты, так и слоты с сигнальным напряжением только 5 вольт. Пиковая пропускная способность - 133 Мбайт/с.

    PCI 2.1 - 3.0

    Отличались от версии 2.0 возможностью одновременной работы нескольких шинных задатчиков (англ. bus-master, т. н. конкурентный режим), а также появлением универсальных карт расширения, способных работать как в слотах, использующих напряжение 5 вольт, так и в слотах, использующих 3,3 вольта (с частотой 33 и 66 МГц соответственно). Пиковая пропускная способность для 33 МГц - 133 Мбайт/с, а для 66 МГц - 266 Мбайт/с.

    • Версия 2.1 - работа с картами, рассчитанными на напряжение 3,3 вольта, и наличие соответствующих линий питания являлись опциональными.
    • Версия 2.2 - сделанные в соответствии с этими стандартами карты расширения имеют универсальный ключ разъёма по питанию и способны работать во многих более поздних разновидностях слотов шины PCI, а также, в некоторых случаях, и в слотах версии 2.1.
    • Версия 2.3 - несовместима с картами PCI, рассчитанными на использование 5 вольт, несмотря на продолжающееся использование 32-битных слотов с 5-вольтовым ключом. Карты расширения имеют универсальный разъём, но не способны работать в 5-вольтовых слотах ранних версий (до 2.1 включительно).
    • Версия 3.0 - завершает переход на карты PCI 3,3 вольт, карты PCI 5 вольт больше не поддерживаются.

    PCI 64

    Расширение базового стандарта PCI, появившееся в версии 2.1, удваивающее число линий данных, и, следовательно, пропускную способность. Слот PCI 64 является удлинённой версией обычного PCI-слота. Формально совместимость 32-битных карт с 64-битным слотами (при условии наличия общего поддерживаемого сигнального напряжения) полная, а совместимость 64-битной карты с 32-битным слотами является ограниченной (в любом случае произойдёт потеря производительности). Работает на тактовой частоте 33 МГц. Пиковая пропускная способность - 266 Мбайт/с.

    • Версия 1 - использует слот PCI 64-бита и напряжение 5 вольт.
    • Версия 2 - использует слот PCI 64-бита и напряжение 3,3 вольта.

    PCI 66

    Версия PCI 66 является работающим на тактовой частоте 66 МГц развитием PCI 64; использует напряжение 3,3 вольта в слоте; карты имеют универсальный, либо форм-фактор на 3,3 В. Пиковая пропускная способность - 533 Мбайт/с.

    PCI 64/66

    Комбинация PCI 64 и PCI 66 позволяет вчетверо увеличить скорость передачи данных по сравнению с базовым стандартом PCI; использует 64-битные 3,3-вольтовые слоты, совместимые только с универсальными, и 3,3-вольтовые 32-битные карты расширения. Карты стандарта PCI64/66 имеют либо универсальный (но имеющий ограниченную совместимость с 32-битными слотами), либо 3,3-вольтовый форм-фактор (последний вариант принципиально не совместим с 32-битными 33-мегагерцовыми слотами популярных стандартов). Пиковая пропускная способность - 533 Мбайт/с.

    PCI-X

    PCI-X 1.0 - расширение шины PCI64 с добавлением двух новых частот работы, 100 и 133 МГц, а также механизма раздельных транзакций для улучшения производительности при одновременной работе нескольких устройств. Как правило, обратно совместима со всеми 3.3В и универсальными PCI-картами. PCI-X карты обычно выполняются в 64-бит 3,3 В формате и имеют ограниченную обратную совместимость со слотами PCI64/66, а некоторые PCI-X карты - в универсальном формате и способны работать (хотя практической ценности это почти не имеет) в обычном PCI 2.2/2.3. В сложных случаях для того, чтобы быть полностью уверенным в работоспособности комбинации из материнской платы и карты расширения, надо посмотреть таблицы совместимости (compatibility lists) производителей обоих устройств.

    PCI-X 2.0

    PCI-X 2.0 - дальнейшее расширение возможностей PCI-X 1.0; добавлены частоты 266 и 533 МГц, а также - коррекция ошибок чётности при передаче данных (ECC ). Допускает расщепление на 4 независимых 16-битных шины, что применяется исключительно во встраиваемых и промышленных системах ; сигнальное напряжение снижено до 1,5 В, но сохранена обратная совместимость разъёмов со всеми картами, использующими сигнальное напряжение 3,3 В. В настоящее время для не профессионального сегмента рынка высокопроизводительных компьютеров (мощных рабочих станций и серверов начального уровня), в которых находит применение шина PCI-X, выпускается крайне мало материнских плат с поддержкой шины. Примером материнской платы для такого сегмента является ASUS P5K WS. В профессиональном сегменте применяется в RAID-контроллерах, в SSD-накопителях под PCI-E.

    Mini PCI

    Форм-фактор PCI 2.2, предназначен для использования, в основном, в ноутбуках.

    PCI Express

    PCI Express, или PCIe, или PCI-E (также известная как 3GIO for 3rd Generation I/O; не путать с PCI-X и PXI ) - компьютерная шина (хотя на физическом уровне шиной не является, будучи соединением типа «точка-точка»), использующая программную модель шины PCI и высокопроизводительный физический протокол , основанный на последовательной передаче данных . Разработка стандарта PCI Express была начата фирмой Intel после отказа от шины InfiniBand. Официально первая базовая спецификация PCI Express появилась в июле 2002 года.Развитием стандарта PCI Express занимается организация PCI Special Interest Group.

    В отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, в общем случае, является пакетной сетью с топологией типа звезда . Устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором. Кроме того, шиной PCI Express поддерживается:

    • горячая замена карт;
    • гарантированная полоса пропускания (QoS );
    • управление энергопотреблением;
    • контроль целостности передаваемых данных.

    Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и тем более PCI и PCI-X . Де-факто PCI Express заменила эти шины в персональных компьютерах.

    • MiniCard (Mini PCIe ) - замена форм-фактора Mini PCI . На разъём Mini Card выведены шины: x1 PCIe, 2.0 и SMBus.
    • ExpressCard - подобен форм-фактору PCMCIA . На разъём ExpressCard выведены шины x1 PCIe и USB 2.0, карты ExpressCard поддерживают горячее подключение.
    • AdvancedTCA , MicroTCA - форм-фактор для модульного телекоммуникационного оборудования.
    • Mobile PCI Express Module (MXM) - промышленный форм-фактор, созданный для ноутбуков фирмой NVIDIA . Его используют для подключения графических ускорителей.
    • Кабельные спецификации PCI Express позволяют доводить длину одного соединения до десятков метров, что делает возможным создание ЭВМ, периферийные устройства которой находятся на значительном удалении.
    • StackPC - спецификация для построения наращиваемых компьютерных систем. Данная спецификация описывает разъёмы расширения StackPC , FPE и их взаимное расположение.

    Несмотря на то, что стандарт допускает x32 линий на порт, такие решения физически достаточно громоздки и не выпускаются.

    Год
    выпуска
    Версия
    PCI Express
    Кодирование Скорость
    передачи
    Пропускная способность на x линий
    ×1 ×2 ×4 ×8 ×16
    2002 1.0 8b/10b 2,5 ГТ/с 2 4 8 16 32
    2007 2.0 8b/10b 5 ГТ/с 4 8 16 32 64
    2010 3.0 128b/130b 8 ГТ/с ~7,877 ~15,754 ~31,508 ~63,015 ~126,031
    2017 4.0 128b/130b 16 ГТ/с ~15,754 ~31,508 ~63,015 ~126,031 ~252,062
    2019
    5.0 128b/130b 32 ГТ/с ~32 ~64 ~128 ~256 ~512

    PCI Express 2.0

    Группа PCI-SIG выпустила спецификацию PCI Express 2.0 15 января 2007 года . Основные нововведения в PCI Express 2.0:

    • Увеличенная пропускная способность: ПСП одной линии 500 МБ/с, или 5 ГТ/с (Гигатранзакций/с ).
    • Внесены усовершенствования в протокол передачи между устройствами и программную модель.
    • Динамическое управление скоростью (для управления скоростью работы связи).
    • Оповещение о пропускной способности (для оповещения ПО об изменениях скорости и ширины шины).
    • Службы управления доступом - опциональные возможности управления транзакциями точка-точка.
    • Управление таймаутом выполнения.
    • Сброс на уровне функций - опциональный механизм для сброса функций (англ. PCI functions) внутри устройства (англ. PCI device).
    • Переопределение предела по мощности (для переопределения лимита мощности слота при присоединении устройств, потребляющих бо́льшую мощность).

    PCI Express 2.0 полностью совместим с PCI Express 1.1 (старые будут работать в системных платах с новыми разъемами, но только на скорости 2,5 ГТ/с, так как старые чипсеты не могут поддерживать удвоенную скорость передачи данных; новые видеоадаптеры будут без проблем работать в старых разъемах стандарта PCI Express 1.х.).

    PCI Express 2.1

    По физическим характеристикам (скорость, разъём) соответствует 2.0, в программной части добавлены функции, которые в полной мере планируют внедрить в версии 3.0. Так как большинство системных плат продаются с версией 2.0, наличие только видеокарты с 2.1 не даёт задействовать режим 2.1.

    PCI Express 3.0

    В ноябре 2010 года были утверждены спецификации версии PCI Express 3.0. Интерфейс обладает скоростью передачи данных 8 GT/s (Гигатранзакций/с ). Но, несмотря на это, его реальная пропускная способность всё равно была увеличена вдвое по сравнению со стандартом PCI Express 2.0. Этого удалось достигнуть благодаря более агрессивной схеме кодирования 128b/130b, когда 128 бит данных, пересылаемых по шине, кодируются 130 битами. При этом сохранилась полная совместимость с предыдущими версиями PCI Express. Карты PCI Express 1.x и 2.x будут работать в разъёме 3.0 и, наоборот, карта PCI Express 3.0 будет работать в разъёмах 1.х и 2.х.

    PCI Express 4.0

    PCI Special Interest Group (PCI SIG) заявила, что PCI Express 4.0 может быть стандартизирован до конца 2016 года, однако на середину 2016 года, когда ряд чипов уже готовился к изготовлению, СМИ сообщали, что стандартизация ожидается в начале 2017. Ожидается, что он будет иметь пропускную способность 16 GT/s, то есть будет в два раза быстрее PCIe 3.0.

    Оставьте свой комментарий!

    Здравствуйте, друзья.

    Уже многие годы материнские платы оснащаются слотами стандарта PCI-E, который вытеснил своего прародителя PCI и еще более устаревшего предшественника AGP. Однако этот стандарт имеет несколько подвидов, и они могут быть расположены на материнке одновременно.

    Это нередко вводит пользователей в заблуждение при выборе железа для своего компьютера. В своей статье я расскажу о PCI Express x16, так как данная спецификация является наиболее востребованной в наши дни, и вы сможете отличать её от других.

    Коротко о PCI-E

    Для тех, кто не в теме, первым делом объясню в двух словах, что вообще представляет собой PCI Express. Так называется современная компьютерная шина, которая предназначена для передачи данных между функциональными блоками ПК.

    Однако в физическом плане это не шина, а соединение типа «точка-точка», то есть напрямую объединяет два устройства. Что можно подключить между собой? Можно соединить материнскую плату с видео-, аудио- и сетевыми картами, Bluetooth и Wi-Fi модулями, специализированными контроллерами диагностики и прочими устройствами. Но в основном в данный слот видеокарты.

    В первую очередь следует отличать поколения PCI-E. В наше время самым распространенным является 3.0, но его уже активно вытесняет последователь, так как работает в два раза быстрее. Спецификация 5.0. появится только в 2019 году.

    Все поколения стандарта имеют одинаковый внешний вид дорожек на материнке. Но длина их может быть разной. В частности, 4 основных размера: PCI Express x16 , x8, x4, x1. Чем выше цифра, тем шире контактная площадка.

    От форм-фактора зависит количество максимальных подключений, которое интерфейс способен передавать на карту и обратно. Эти соединения правильнее называть линиями, которые состоят из двух сигнальных пар: одна передает информацию, другая - принимает. Скорость передачи данных определяется версией PCI-E.

    Скорости и совместимость

    Чтобы вы лучше понимали, о чем я говорю, ознакомьтесь с таблицей:

    Версия Подключения (в гигабайтах за секунду)
    х1 х2 х4 х8 х16
    1.0 0.25 0.5 1.0 2.0 4.0
    2.0 0.5 1.0 2.0 4.0 8.0
    3.0 0.98 1.97 3.94 7.88 15.8
    4.0 1.96 3.94 7.88 15.75 31.5
    5.0 3.93 7.88 15.75 31.51 63.0

    Пропускная способность PCI Express x16 в наиболее распространенном ныне третьем поколении составляет 4 ГБ/с в каждую сторону. Перемножив их, мы получаем общую цифру 16 ГБ/с, но на практике немного меньше. Этого вполне достаточно для современных видеокарт.

    Учитывайте, что устройство меньшего форм-фактора можно вставить в больший слот, но оно будет работать на собственной скорости. Например, видеокарта имеет интерфейс х4, а материнка - х16; они совместимы между собой, однако слот не способен добавить девайсу мощности. В свою очередь, вставить устройство с большим интерфейсом, чем имеет материнка, не получится даже физически.

    На этом всё.

    Коротко об истории...

    Впервые отдельный интерфейс, призванный стать заменой шины PCI для видеокарт, был представлен в 1997 году. AGP (от англ. Accelerated Graphics Port, ускоренный графический порт) - именно так представила свою новую разработку компания Intel одновременно с официальным анонсом чипсета для процессоров Intel Pentium II.

    Заявленные преимущества AGP перед его предшественником PCI были существенны:

    • более высокая частота работы (66 МГц);
    • увеличенная пропускная способность между видеокартой и системной шиной;
    • прямая передача информации между видеокартой и оперативной памятью, минуя процессор;
    • улучшенная система питания;
    • высокоскоростной доступ к общей памяти.

    Должного развития стандарт AGP 1x (спецификация AGP 1.0) не получил из-за низкой скорости работы с памятью и был практически сразу же усовершенствован, а его скорость удвоена - так появился интерфейс AGP 2x. Передавая за один такт 32 бита (4 байта), порт AGP 2x мог выдавать невиданную по тем временам пиковую производительность 66.6х4х2=533 М B / s .

    В 1998 году увидел свет стандарт AGP 4x (спецификация AGP 2.0), обеспечивающий передачу до 4 блоков информации за один такт. При этом сигнальное напряжение порта было понижено с 3.3 до 1.5 В. Максимальная пропускная способность AGP 4x стала около 1 GB / s . В дальнейшем развитие спецификаций носило затяжной характер - причиной тому послужила весьма низкая скорость существовавшего на тот момент парка видеоускорителей, а также низкая скорость обмена с оперативной памятью.

    Как только технический прогресс "уперся" в шину, которая оказалась слишком мала для передачи огромных потоков информации современными видеокартами, был утвержден новый стандарт - AGP 8x (спецификация AGP 3.0). Как вы уже догадались, он может передавать до 8 блоков информации за один такт и обладает пиковой пропускной способностью 2 GB / s . Шина AGP 8x имеет обратную совместимость с AGP 4x.

    Отрасль высоких технологий всегда идет стремительно ввысь. Наращиваются объемы передаваемых и пропускаемых данных, растут текстуры и их качество, все это непременно заставляет каждого из производителей устраивать себе встряску и выдавать "на-гора" что-нибудь новенькое и высокотехнологичное (стандарт, спецификации, протокол, интерфейс), который свяжет с собой новый виток в сфере hi - tech .

    Официально первая базовая спецификация PCI Express появилась в июле 2002 года, тем самым был ознаменован день постепенного "ухода из жизни" AGP 8x…

    Введение

    На данный момент современный набор логики Intel P45/X48 имеет официальную поддержку спецификаций PCI Express 2.0, чем не мог похвастаться весьма распространенный Intel P35. Для тех, кто еще только собирается приобрести современную плату на платформе Intel, выбор остается вполне очевидным - чипсет P45/X48, и у вас не возникнет дилеммы "хватит или не хватит" PCI Express 1.1 для нынешней hi-end или middle-end видеокарты. А как же быть владельцам P35-ых? Стоит ли снова бежать в магазин?

    В нашем сегодняшнем материале мы попытаемся расставить все точки над "I" касательно преимуществ PCI-E 2.0 над PCI-E 1.1 для современных ускорителей. Также экспериментальным путем мы проанализируем производительность видеокарт при работе с различными интерфейсами, на основе чего и будет сделан вывод о практической ценности PCI-E 2.0.

    И перед тем, как приступить к каким-либо объективным тестам, давайте немного углубимся в теорию, а именно разберемся, как вообще это все работает.

    PCI - Express - коротко о главном

    Как уже упоминалось выше, базовая спецификация PCI Express появилась в июле 2002 года. Благодаря высокой скорости и пиковой производительности шина PCI Express не оставляет шансов своему предшественнику AGP. По своей программной модели новый интерфейс PCI-E во многом аналогичен PCI, что позволяет легко адаптировать нынешний парк всевозможных устройств к новому интерфейсу без значительных софтверных "подгонок".

    Принцип работы PCI Express основан на последовательной передаче данных. Шина представляет собой пакетную сеть с топологией типа "звезда". При взаимодействии PCI-E устройств используется двунаправленное соединение типа "точка-точка", получившее название "Line" (линия). Каждое соединение PCI Express может состоять из одной (1х) или множества линий (4х, 16х и т.д).

    Для базовой конфигурации PCI-Express 1х теоретическая пропускная способность составляет 250 MB/s в каждом направлении (передача/прием). Соответственно, для PCI-E x16 это значение равно 250 MB/s х 16 = 4 GB/s.

    Примечателен тот факт, что с физической стороны интерфейс позволяет, например, любой плате с интерфейсом PCI-E 1х уверенно работать не только в штатном, но и в любом другом слоте PCI Express большей пропускной способности (4х, 16х и т.д.). При этом максимальное количество задействованных линий зависит только от свойств устройства.

    Во всех высокоскоростных протоколах всегда остро встает вопрос помехозащищенности. На этот счет в PCI Express используется уже давно известная схема 8/10 или избыточного трафика (8 бит данных, передаваемых по каналу, заменяются на 10 бит, таким образом, генерируется дополнительная информация, около 20% от общего "потока").

    PCI Express 2.0

    Стандарт был официально утвержден 15 января 2007 года. Во второй ревизии PCI Express значительно увеличилась пропускная способность одного канала - до 5 Gb/s (PCI Express 1.x - 2.5 Gb/s). Это означает, что теперь для линии x16 максимальная скорость передачи данных может достигать 8 GB/s в обоих направлениях против 4 GB/s для старого PCI Express 1.х.

    Примечательным фактом является то, что PCI Express 2.0 полностью совместим с PCI Express 1.1. На деле это означает, что старые видеокарты буду спокойно работать в системных платах с новыми разъемами, и новые видеоадаптеры будут без проблем работать в старых разъемах стандарта PCI Express 1.х.

    Пожалуй, на этом с теорией и основными особенностями PCI Express давайте закруглимся, пора приступать к соответствующим тестам, чем мы, собственно говоря, и займемся, правда, чуть ниже, а пока давайте детально познакомимся с участниками тестирования.

    Об участниках тестирования

    К сожалению, охватить больший набор графических ускорителей на момент тестирования не представлялось возможным, что в последующем мы обязательно исправим. Видеокарты класса Low-End исключены из тестов преднамеренно, так как они малопригодны для режимов с высоким разрешением (свыше 1280х1024) при максимальной детализации картинки, где как раз и могут быть выявлены преимущества PCI-E 2.0 над младшим PCI-E 1.1.

    Видеокарта

    Poin Of View GeForce GTX 280

    POV GeForce 9600 GT 512 MB Extreme Overclock

    Palit HD 4850 Sonic

    Кодовое название чипа

    Техпроцесс