Простая схема для проверки оксидных конденсаторов. Прибор для проверки конденсаторов: аналоговый ЭПС-метр. Устройства низкой точности

Очень часто причиной отказов разной электронной техники являются электролитические конденсаторы, и не потеря их ёмкости, а увеличение их внутреннего сопротивления.
Этот параметр играет основную роль в работе импульсных устройствах, а обычные измерители ёмкости в большинстве своём, этот параметр не видят.

Решил попробовать собрать испытатель электролитических конденсаторов на обычной рассыпухе, без всяких МК и дисплеев, простой, надёжный в работе и легко повторяемый.
Было сделано несколько таких приборов, и здесь приведена схема последнего, очень удачного варианта, позволяющего с определённой степенью вероятности проверять электролитические конденсаторы не выпаивая их из схемы, если питающее напряжение в данной цепи 5 вольт и более.

Принцип работы.

При включении питания - заряжается конденсатор С9 (ёмкостью 100-47мкФ), после нажатия кнопки SA3 кратковременно срабатывают контакты реле Р1 и заряжают испытываемый конденсатор через низкоомный резистор R2 (R5), на нём создаётся коротенький импульс и он через делитель R3, R4 открывает (или не открывает если его не достаточно) тиристор на что указывает светодиод VD3.
Если внутреннее сопротивление конденсатора более 0,05 (0,1) Ом, то падения напряжения не достаточно для открывания и это говорит о неисправности электролитического конденсатора.

Резистором R4 настраивается чувствительность прибора, переключателем SA1 переключается чувствительность. Резистор R1 служит для мягкого разряда конденсатора.

Настройка сводится к установке порога срабатывания по плёночному конденсатору 1мкФ (был взят из строчной развёртки старого монитора, при проверке промышленным прибором показал внутренне сопротивление 0 Ом, при нижнем пределе измерений прибора 0,01 Ом), это позволяет на более чувствительном пределе (выключатель SA1 разомкнут) испытывать электролитические конденсаторы до 47мкФ, и на менее чувствительном пределе (SA1 замкнут) конденсаторы более 47мкф, хотя очень качественные электролитические конденсаторы и меньшей ёмкости срабатывающие на этом пределе.
Результаты сравнивались с промышленным прибором измерителем внутреннего сопротивления.
Перед настройкой прибора, нужно установить потенциометр в крайнее правое по схеме положение, замкнуть измерительные щупы, и нажимая периодически кнопку «Пуск» вращать потенциометр до срабатывания светодиода. Это для проверки исправности схемы, далее подключаем к щупам плёночный конденсатор 1мкФ и потихоньку вращаем дальше нажимая кнопку «Пуск». Момент срабатывания светодиода и будет нужным порогом.


С корпусом и дизайном заморачиваться не стал, задача была - собрать работоспособный прибор.
Корпус для него взял от старого компьютерного ИБП, поэтому за внешний вид особо не "пинайте". Так же и с печаткой. Так как деталей в схеме не много, то сделал монтаж навесным способом.

Все радиоэлементы для схемы были взяты из старой техники. Сетевой трансформатор любой, с выходным напряжением 10-14 вольт, рассчитанный на ток вторичной обмотки 0,2-0,5А, диодный мост любой на примерно такой же ток, стабилизатор напряжения на 5 вольт любой из серии LM7805, KA7805.
Конденсаторы С2-С6 нужны хорошие, взяты из старой материнской платы, предварительно проверены на исправность. Для хорошего качества работы прибора, лучше взять больше конденсаторов в параллель, обязательно в параллель!!!
Реле взято от старого бесперебойника с обмоткой на 9 вольт, можно и на 12 вольт, главное что бы оно кратковременно срабатывало от конденсатора С9, если обмотка реле будет с небольшим сопротивлением, то возможно придётся подобрать ёмкость конденсатора С9 (в сторону увеличения).
Тиристор взят от старого импульсного блока питания телевизора 3УСЦТ (строчной развёртки), нужен быстродействующий тиристор.
Для верности измерений, цепи где протекают измерительные токи, нельзя выполнять тонким проводом. Я использовал провода сечением 0,75кв.мм., щупы прибора тоже желательно делать не длинными 30-40см. Светодиоды любые, какие кому нравятся, желательно большие яркие.

Да, единственное что необходимо соблюдать при проверке электролитических конденсаторов - это полярность их подключения к прибору.

При помощи этого простого прибора можно проверить конденсатор на утечку или обрыв.

Рассчитан он на конденсаторы емкостью более 50 пФ. Основой прибора является собранный на элементах DD1.1- DD1.3 генератор прямоугольных импульсов, частота следования которых составляет около 75 кГц, а скважность примерно 3.

Схема прибора для проверки конденсаторов

Элемент DD1.4, включенный инвертором, исключает влияние нагрузки на работу генератора. С его выхода импульсное напряжение идет по цепи: резистор R3, конденсатор С2 и проверяемый конденсатор, подключенный к гнездам XS1 и XS2 и далее через диод VD1, микроамперметр РА1 и шунтирующий их резистор R2.
Детали этой нагрузочной цепи подобраны таким образом, что без проверяемого конденсатора в ней ток через стрелочный прибор РА1 не превышает 15 мкА. При подключении проверяемого конденсатора и нажатии кнопки SB1 ток в цепи увеличивается до 40 ... 60 мкА, и если прибор будет показывать ток в этих пределах, то независимо от емкости проверяемого конденсатора можно сделать вывод о его исправности.
Эти пределы тока цепи отмечают на шкале прибора цветными метками. Если емкость проверяемого конденсатора больше 5 мкФ, то при нажатии на кнопку стрелка индикатора резко отклонится до конечной отметки шкалы, а затем, возвращаясь назад, устанавливается в пределах отмеченного сегмента.
Полярный конденсатор "плюсовым" выводом подключают к гнезду XS1.При внутреннем обрыве проверяемого конденсатора стрелка индикатора останется на исходной отметке, а если конденсатор пробит или его внутренне сопротивление, характеризующее ток утечки, менее 60 кОм, стрелка индикатора отклоняется за пределы контрольного сегмента и даже может зашкаливать.

Настройка прибора для проверки конденсаторов

После включения питания стрелка должна отклониться до деления примерно 15 мкА. В случае необходимости такой ток устанавливают подбором резистора R3. Затем к гнездам «Сх» подключают конденсатор емкостью 220 ... 250 пФ и подбором резистора R2 добиваются отклонения стрелки индикатора до отметки 50 мкА.
После этого замкнув гнезда, убеждаются в отклонении стрелки за пределы шкалы.Монтажную плату устройства вместе с питающей его батареей 3336Л следует разместить в корпусе подходящих размеров. Но прибор можно питать от любого другого источника с напряжением 5 В и током не менее 50 мА.

Печатная плата прибора



В качестве микроамперметра можно использовать китайский стрелочный прибор. Вот его шкала:

Вместо нее изготавливается другая шкала (клеится поверх прежней).
На новой шкале отмечается сектор: относительно "родной" шкалы он будет находиться в районе 8...20 Ом по верхним делениям. Вот так она будет выглядеть

Для нормальной работы микроамперметра сопротивление R3 снижено до 100 Ом. Выключатель SB1 не применяется. Всё устройство получает питание от 4-х батареек 1,5В, то есть 6В, что ни как не сказывается на работе измерителя. Ток потребления в дежурном режиме с микросхемой К131ЛА3 составил 20,3 мА, в режиме измерения 20,5 мА.

Внешний вид прибора

Примеры измерений


Примечание :
Источник : Массовая радиобиблиотека (МРБ), И.А.Нечаев, "Конструкции на логических элементах цифровых микросхем" стр.43, Издательство "Радио и связь"
Фото с сайта radio-hobby.org

28 ноября 2005 г.
www.сайт

Схема № 1

Часто в руки радиолюбителей попадают электролитические конденсаторы, качество которых вызывает сомнение. Дело в том, что с течением времени электролит в них высыхает и их емкость падает. Иногда почти до нуля. Устанавливать такие конденсаторы в схему, конечно, нельзя. Но как их проверить? Как узнать, годится этот конденсатор или нет? Приборы, предназначенные для измерения емкости электролитических конденсаторов, сложны и дороги. В любительских условиях вполне можно обойтись простейшим прибором, описание которого приведено в этой статье. Он позволяет проверить работоспособность конденсаторов, в том числе и электролитических, с рабочим напряжением более 4,5 В и емкостью от 0,5 до 1000 мкФ. Таким образом можно определить пробой в конденсаторе, наличие большой утечки и ориентировочно оценить даже его емкость.

Конечно, точность определения емкости невелика, но вполне достаточна, чтобы ответить, можно или нельзя устанавливать данный конденсатор в схему.

Принципиальная схема прибора приведена на рисунке 1.

Как видно из схемы, прибор представляет собой несимметричный мультивибратор, собранный на транзисторах разной проводимости.

Принцип действия прибора основан на том, что его частота зависит от величины емкости параллельно включенных конденсаторов С1 и Сх. Индикатором колебаний служит лампа накаливания H1. Питается прибор от батареи Б1.

При включении питания оба транзистора открываются. Вспыхивает лампочка, и через резистор R1 начинает заряжаться конденсатор С1. Ток заряда проходит по цепи база-эмиттер V1, открывая его. когда конденсатор зарядится, ток заряда, открывавший транзистор V1, падает до нуля. Транзисторы закрываются. Лампочка гаснет. В таком состоянии схема будет находится до тех пор, пока конденсатор С1 не разрядится через резисторы R2, R3. Затем этот процесс повторится сначала.

При подключении параллельно С1 проверяемого конденсатора их общая емкость увеличивается и время разряда станет больше. Лампочка начнет мигать реже. Если емкость подключаемого конденсатора мала, то это изменение будет незначительным. А при подключении конденсатора емкостью в 1000 мкФ лампочка будет вспыхивать примерно через двадцать секунд. Если конденсатор пробит или имеет большой ток утечки, то лампочка будет гореть непрерывно.

Транзистор V1 - КТ315 или другой аналогичный структуры n-p-n. Только надо отбирать экземпляры с Jко не более 1 мкА и коэффициентом усиления не менее 50.
Транзистор V2 - МП39 или другой аналогичный структуры p-n-p c коэффициентом усиления не менее 50.

Конденсатор С1 бумажный или керамический любого типа. Резисторы тоже любого типа.

Лампочка Н1 - обычная, от карманного фонаря, напряжением 2,5 В и током 0,15 А. Использовать лампочки с большим током и напряжением нельзя.

НАЛАЖИВАНИЕ ПРИБОРА начинайте с установки максимального значения величины резистора R3, поставив его движок в нижнее (по схеме) положение. Для начала поставьте резистор R1 величиной 680 Ом. Включив питание, проверьте работу мультивибратора. Если он работает, то лампочка должна мигать. В противном случае увеличьте величину резистора R2. Добившись работы мультивибратора, подберите величину R1. Она может быть выбрана в пределах 680 Ом -4,7 кОм. При больших величинах лампочка горит дольше, но мультивибратор работает менее устойчиво. Поэтому надо установить такую величину резистора R1, при которой генератор устойчиво работает и лампочка достаточно ярко светит на максимальной частоте. Эту частоту устанавливают резистором R3. В смонтированном образце она равна примерно 10 Гц.

Мигающая лампочка служит хорошим индикатором включения прибора. Подключение проверяемого конденсатора уменьшает частоту мигания лампочки. Для опытного глаза изменение частоты заметно уже при подключении конденсатора в 0,05 мкФ. Подключение пробитого конденсатора или конденсатора с большой утечкой вызывает непрерывное свечение лампочки. Лампочка довольно долго горит при подключении конденсаторов большой емкости - 100 - 1000 мкФ. Поэтому, чтобы воспользоваться прибором, надо предварительно потренироваться, подключая к прибору заведомо исправные конденсаторы в 5, 10, 20, 50 и более микрофарад. Прибором, несомненно, можно проверять и неэлектролитические конденсаторы.

В заключение хотелось бы заметить, что давно не работавшие электролитические конденсаторы с большой утечкой следует на некоторое время подключить к источнику постоянного тока с напряжением, равным рабочему напряжению конденсатора. После непродолжительной работы в таком режиме ток утечки заметно понизится, и конденсатор вновь может быть использован.

Схема № 2 Измеритель ESR электролитических конденсаторов

Илья Липавский. © 2003
НАЗНАЧЕНИЕ

Устройство позволяет измерять ESR электролитических конденсаторов с индикацией измеряемой величины на линейной шкале стрелочного прибора или на индикаторе цифрового мультиметра.

КОНСТРУКЦИЯ

Схема устройства собрана на четырёх ОУ. На ОР 1 собран генератор частотой 120 кГц. Напряжение с этого генератора подаётся на инвертирующий усилитель на ОР 2, в цепь обратной связи которого включается тестируемый конденсатор. Так как величина коэффициента усиления инвертирующего усилителя на ОУ прямо пропорциональна величине сопротивления резистора в цепи ООС, то его выходное напряжение будет прямо пропорционально измеряемой величине. Далее следует нормирующий усилитель ОР 3. Меняя его коэффициент усиления, переключая резистор обратной связи, получаем возможность легко изменять диапазон измерения. Далее, следует линейный вольтметр на ОР 4. Если вместо микроамперметра включить резистор, величиной в несколько килоом, то напряжение на нём можно измерять цифровым мультиметром. Например, на FLUKE есть oчень удобный поддиапазон - 300 мВ.

Рис. 2 Принципиальная схема измерителя ESR электролитических конденсаторов

Схема устройства предоставлена на Рис.2, и имеет два предела измерения 1 Ом и 5 Ом. Но их может быть сколько угодно. Включив вместо резистора R9,например, 9 кОм, получим предел 10 Ом.

Вообще, как мне представляется, применение данного прибора для целей выявления неисправных конденсаторов при ремонтах РЭА ничем не лучше, чем применение устройства для измерения ESR на трансформаторе. Но, когда интересует точное значение ESR, при подборе конденсаторов, например, тогда его применение целесообразно.

Следует учитывать, что наличие даже очень маленькой индуктивности (ферритовой бусинки, например, надетой на провод) вызывает заметное (на пределе 1 Ом - более половины шкалы) отклонение стрелки. Так можно легко различать проволочные и плёночные резисторы, например, если по внешнему виду определить затруднительно.

Следует остановиться на конструкции щупов. Наилучшие результаты показали витые щупы из четырёх проводов, диаметром в изоляции, около одного миллиметра. Два провода свиваются между собой, а потом две косички свиваются между собой. При длине 40 см, вносимая погрешность - около 0.2 Ома. Такой же косичкой из четырёх проводов, только короткой, производится подключение к клеммам на корпусе прибора. В качестве клемм удобно использовать колодки для подключения звуковых колонок.

Номиналы деталей, за исключением номиналов резисторов R7, R8 и R9, определяющих границы диапазонов,не критичны. Питание устройства от 12 дисковых аккумуляторов, ёмкостью 0.28 А-Ч.

НАСТРОЙКА

Настройка производится так. Вставляем в колодку известное сопротивление, например, 3 Ома. Вращая триммер R11 устанавливаем стрелку на 30 (если 50-и микроамперная головка). И всё. Испытания устройства на конденсаторах ёмкостью 820-4700 мкФ производителей SXE, SAMHWA, KELNA, LXY и других, с величиной ESR менее 0.1 Ома, подтвердили его достаточно высокую эффективность.

Всего хорошего, пишите to © 2005

  • 08.10.2014

    Стереофонический регулятор громкости, баланса и тембра на ТСА5550 имеет следующие параметры: Малые нелинейные искажения не более 0,1% Напряжение питания 10-16В (12В номинальное) Ток потребления 15…30мА Входное напряжение 0,5В (коэффициент усиления при напряжении питания 12В единица) Диапазон регулировки тембра -14…+14дБ Диапазон регулировки баланса 3дБ Разница между каналами 45дБ Отношение сигнал шум …

  • 29.09.2014

    Принципиальная схема передатчика показана на рис.1. Передатчик (27МГц) выдает мощность около 0,5Вт. В качестве антенны используется провод 1 м длиной. Передатчик состоит из 3-х каскадов — задающего генератора (VT1), усилителя мощности (VT2) и манипулятора (VT3). Частота задающего генератора задается кв. резонатором Q1 на частоту 27 МГц. Нагружен генератор на контур …

  • 28.09.2014

    Параметры усилителя: Суммарный диапазон воспроизводимых частот 12…20000Гц Максимальная выходная мощность СЧ-ВЧ каналов(Rн=2,7Ом, Uп=14В) 2*12Вт Максимальная выходная мощность НЧ канала(Rн=4Ом, Uп=14В) 24Вт Номинальная мощность СЧ-ВЧ каналов при КНИ 0,2% 2*8Вт Номинальная мощность НЧ канала при КНИ 0,2% 14Вт Максимальный ток потребления 8 А В данной схеме А1 — ВЧ-СЧ усилитель, а …

  • 30.09.2014

    УКВ-приемник работает в диапазоне 64-108МГц. Схема приемника основана на 2-х микросхемах: К174ХА34 и ВА5386, дополнительно в схеме присутствуют 17 конденсаторов и всего 2-а резистора. Колебательный контур один, гетеродинный. На А1 выполнен супергетеродинный УКВ-ЧМ без УНЧ. Сигнал от антенны поступает через С1 на вход ПЧ микросхемы А1(вывод12). Настройка на станцию производится …

Очень часто необязательно знать точное значение емкости конденсатора, достаточно быть уверенным в его работоспособности. Для этого существуют различные пробники, испытатели. Схемы некоторых из них приводятся в этой подборке.

Как проверить оксидный конденсатор

Разумеется, что если необходимо убедиться в работоспособности конденсатора, то лучший вариант для этого — собрать измеритель емкости. Но подобные измерительные приборы зачастую трудоемки в изготовлении и сложны в настройке. Но выход есть. Можно просто собрать пробник по приведенной схеме.

Прибор для проверки конденсаторов

При длительной, равно как и в условиях жесткой, эксплуатации большинство неисправностей в работе радиоэлектронной аппаратуры часто связаны с утратой емкости электролитических конденсаторов. Как известно любому радиолюбителю, процесс выпаивания конденсаторов сопряжен с определенными трудностями, тем более, что остается риск порчи как радиодетали, так и печатной платы. Но можно смастерить прибор для проверки конденсаторов, который позволяет проверять их без необходимости выпайки из схемы. Этот прибор прост при повторении и не нуждается в настройке.